Building realistic and reliable models of the subsurface is the primary goal of seismic imaging. Here we construct an ensemble of convolutional neural networks (CNNs) to build velocity models directly from the data. Most other approaches attempt to map full data into 2D labels. We exploit the regularity of seismic acquisition and train CNNs to map gathers of neighboring common midpoints (CMPs) to vertical 1D velocity logs. This allows us to integrate well-log data into the inversion, simplify the mapping by using the 1D labels, and accommodate larger dips relative to using single CMP inputs. We dynamically generate the training data in parallel with training the CNNs, which reduces overfitting. Data generation and training of the CNNs is more computationally expensive than conventional full-waveform inversion (FWI). However, once the network is trained, data sets with similar acquisition parameters can be inverted much faster than with FWI. The multiCMP CNN ensemble is tested on multiple realistic synthetic models, performs well, and was combined with FWI for even better performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.