A common problem encountered in disciplines such as statistics, data analysis, signal processing, textual data representation, and neural network research, is finding a suitable representation of the data in the lower dimension space. One of the principles used for this reason is a factor analysis. In this paper, we show that Hebbian learning and a Hopfield-like neural network could be used for a natural procedure for Boolean factor analysis. To ensure efficient Boolean factor analysis, we propose our original modification not only of Hopfield network architecture but also its dynamics as well. In this paper, we describe neural network implementation of the Boolean factor analysis method. We show the advantages of our Hopfield-like network modification step by step on artificially generated data. At the end, we show the efficiency of the method on artificial data containing a known list of factors. Our approach has the advantage of being able to analyze very large data sets while preserving the nature of the data.
An usual task in large data set analysis is searching for an appropriate data representation in a space of fewer dimensions. One of the most efficient methods to solve this task is factor analysis. In this paper, we compare seven methods for Boolean factor analysis (BFA) in solving the so-called bars problem (BP), which is a BFA benchmark. The performance of the methods is evaluated by means of information gain. Study of the results obtained in solving BP of different levels of complexity has allowed us to reveal strengths and weaknesses of these methods. It is shown that the Likelihood maximization Attractor Neural Network with Increasing Activity (LANNIA) is the most efficient BFA method in solving BP in many cases. Efficacy of the LANNIA method is also shown, when applied to the real data from the Kyoto Encyclopedia of Genes and Genomes database, which contains full genome sequencing for 1368 organisms, and to text data set R52 (from Reuters 21578) typically used for label categorization.
The objective of this paper is to introduce a neural-network-based algorithm for word clustering as an extension of the neural-network-based Boolean factor analysis algorithm (Frolov , 2007). It is shown that this extended algorithm supports even the more complex model of signals that are supposed to be related to textual documents. It is hypothesized that every topic in textual data is characterized by a set of words which coherently appear in documents dedicated to a given topic. The appearance of each word in a document is coded by the activity of a particular neuron. In accordance with the Hebbian learning rule implemented in the network, sets of coherently appearing words (treated as factors) create tightly connected groups of neurons, hence, revealing them as attractors of the network dynamics. The found factors are eliminated from the network memory by the Hebbian unlearning rule facilitating the search of other factors. Topics related to the found sets of words can be identified based on the words' semantics. To make the method complete, a special technique based on a Bayesian procedure has been developed for the following purposes: first, to provide a complete description of factors in terms of component probability, and second, to enhance the accuracy of classification of signals to determine whether it contains the factor. Since it is assumed that every word may possibly contribute to several topics, the proposed method might be related to the method of fuzzy clustering. In this paper, we show that the results of Boolean factor analysis and fuzzy clustering are not contradictory, but complementary. To demonstrate the capabilities of this attempt, the method is applied to two types of textual data on neural networks in two different languages. The obtained topics and corresponding words are at a good level of agreement despite the fact that identical topics in Russian and English conferences contain different sets of keywords.
In this paper, we compare performance of novel neural network based algorithm for Boolean factor analysis with several dimension reduction techniques as a tool for feature extraction. Compared are namely singular value decomposition, semi-discrete decomposition and non-negative matrix factorization algorithms, including some cluster analysis methods as well. Even if the mainly mentioned methods are linear, it is interesting to compare them with neural network based Boolean factor analysis, because they are well elaborated. Second reason for this is to show basic differences between Boolean and linear case. So called bars problem is used as the benchmark. Set of artificial signals generated as a Boolean sum of given number of bars is analyzed by these methods. Resulting images show that Boolean factor analysis is upmost suitable method for this kind of data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.