Proliferative diabetic retinopathy (PDR) the sequel of diabetic retinopathy (DR), a frequent complication of diabetes mellitus (DM), is the leading cause of blindness in the working-age population. The current screening process for the DR risk is not sufficiently effective such that often the disease is undetected until irreversible damage occurs. Diabetes-associated small vessel disease and neuroretinal changes create a vicious cycle resulting in the conversion of DR into PDR with characteristic ocular attributes including excessive mitochondrial and retinal cell damage, chronic inflammation, neovascularisation, and reduced visual field. PDR is considered an independent predictor of other severe diabetic complications such as ischemic stroke. A “domino effect” is highly characteristic for the cascading DM complications in which DR is an early indicator of impaired molecular and visual signaling. Mitochondrial health control is clinically relevant in DR management, and multi-omic tear fluid analysis can be instrumental for DR prognosis and PDR prediction. Altered metabolic pathways and bioenergetics, microvascular deficits and small vessel disease, chronic inflammation, and excessive tissue remodelling are in focus of this article as evidence-based targets for a predictive approach to develop diagnosis and treatment algorithms tailored to the individual for a cost-effective early prevention by implementing the paradigm shift from reactive medicine to predictive, preventive, and personalized medicine (PPPM) in primary and secondary DR care management.
Due to the reactive medical approach applied to disease management, stroke has reached an epidemic scale worldwide. In 2019, the global stroke prevalence was 101.5 million people, wherefrom 77.2 million (about 76%) suffered from ischemic stroke; 20.7 and 8.4 million suffered from intracerebral and subarachnoid haemorrhage, respectively. Globally in the year 2019 — 3.3, 2.9 and 0.4 million individuals died of ischemic stroke, intracerebral and subarachnoid haemorrhage, respectively. During the last three decades, the absolute number of cases increased substantially. The current prevalence of stroke is 110 million patients worldwide with more than 60% below the age of 70 years. Prognoses by the World Stroke Organisation are pessimistic: globally, it is predicted that 1 in 4 adults over the age of 25 will suffer stroke in their lifetime. Although age is the best known contributing factor, over 16% of all strokes occur in teenagers and young adults aged 15–49 years and the incidence trend in this population is increasing. The corresponding socio-economic burden of stroke, which is the leading cause of disability, is enormous. Global costs of stroke are estimated at 721 billion US dollars, which is 0.66% of the global GDP.Clinically manifested strokes are only the “tip of the iceberg”: it is estimated that the total number of stroke patients is about 14 times greater than the currently applied reactive medical approach is capable to identify and manage. Specifically, lacunar stroke (LS), which is characteristic for silent brain infarction, represents up to 30% of all ischemic strokes. Silent LS, which is diagnosed mainly by routine health check-up and autopsy in individuals without stroke history, has a reported prevalence of silent brain infarction up to 55% in the investigated populations. To this end, silent brain infarction is an independent predictor of ischemic stroke. Further, small vessel disease and silent lacunar brain infarction are considered strong contributors to cognitive impairments, dementia, depression and suicide, amongst others in the general population. In sub-populations such as diabetes mellitus type 2, proliferative diabetic retinopathy is an independent predictor of ischemic stroke.According to various statistical sources, cryptogenic strokes account for 15 to 40% of the entire stroke incidence. The question to consider here is, whether a cryptogenic stroke is fully referable to unidentifiable aetiology or rather to underestimated risks. Considering the latter, translational research might be of great clinical utility to realise innovative predictive and preventive approaches, potentially benefiting high risk individuals and society at large.In this position paper, the consortium has combined multi-professional expertise to provide clear statements towards the paradigm change from reactive to predictive, preventive and personalised medicine in stroke management, the crucial elements of which are: Consolidation of multi-disciplinary expertise including family medicine, predictive and in-depth diagnostics followed by the targeted primary and secondary (e.g. treated cancer) prevention of silent brain infarction Application of the health risk assessment focused on sub-optimal health conditions to effectively prevent health-to-disease transition Application of AI in medicine, machine learning and treatment algorithms tailored to robust biomarker patterns Application of innovative screening programmes which adequately consider the needs of young populations
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.