Knowledge of propeller or rotor blade behaviour under real operating conditions is crucial for optimizing the performance of a propeller or rotor system. A team of researchers, technicians and engineers from Avia Propeller, DLR, EVEKTOR and HARDsoft developed a rotating stereo camera system dedicated to in-flight blade deformation measurements. The whole system, co-rotating with the propeller at its full speed and hence exposed to high centrifugal forces and strong vibration, had been successfully tested on an EVEKTOR VUT 100 COBRA aeroplane in Kunovice (CZ) within the project AIM 2 -advanced in-flight measurement techniques funded by the European Commission (contract no. 266107). This paper will describe the work, starting from drawing the first sketch of the system up to performing the successful flight test. Apart from a description of the measurement hardware and the applied IPCT method, the paper will give some impressions of the flight test activities and discuss the results obtained from the measurements.
An external fixation device (fixator) placed outside the human body is widely used for treating complicated or infected fractures. It is used for several weeks, and its main advantages are that the injury can be treated continuously, and the patient can be fully mobile within a few days. In addition, it allows the doctor to reposition bone fragments during the operation and also during convalescence. Composite materials are used in the structure because of their density/stiffness ratio and also because of their X-ray transparency. Main goal of this work is right design of external fixation device from composites which will be proved by experiments with the focus on fixator's socket. The socket of the fixator is manufactured by press forming from carbon/polyphenylenesulphide (C/PPS) pellets, and the tube for defining the distance between the sockets is manufactured from carbon fiber/epoxy resin (C/epoxy) by filament winding technology. The fixator was designed with the use of finite element calculations, and static and fatigue experiments were successfully performed on two designed configurations.
This paper deals with the design of the carbon fibre composite driveshaft. This driveshaft will be used for connection between piston engine and propulsor of the type of axial-flow fan. Three different versions of driveshaft were designed and produced. Version 1 if completely made of Al alloy. Version 2 is of hybrid design where the central part is made of high strength carbon composite and flanges are made of Al alloy. Adhesive bond is used for connection between flanges and the central CFRP tube. Version 3 differs from the version 2 by aplication of ultrahigh-strength carbon fibre on the central part. Dimensions and design conditions are equal for all three versions to obtain simply comparable results. Calculations of driveshafts are described in the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.