Current state and historical evolution of theoretical strength calculations is presented as a brief overview completed by a database of selected theoretical and experimental results. Principles of a sophisticated analysis of mechanical stability of crystals are elucidated by means of a schematic example. Stability conditions and Jacobian matrixes are presented for selected crystalline symmetries and deformation paths. The importance of this analysis for understanding micromechanics of fracture is shown against the background of the influence of crystal defects. Differences between theoretical and experimental theoretical strength (TS) values are discussed and some challenging tasks are outlined for the near future.
A simulation of a tensile test of copper crystal along the [001] direction is performed using the Vienna ab initio simulation package (VASP). Stability conditions for a uniaxially loaded system are presented and analysed and the ideal (theoretical) tensile strength for the loading along the [001] direction is determined to be 9.4 GPa in tension and 3.5 GPa in compression. A comparison with experimental values is performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.