Dermacentor reticulatus is a hard tick species with extraordinary biological features. It has a high reproduction rate, a rapid developmental cycle, and is also able to overcome years of unfavourable conditions. Dermacentor reticulatus can survive under water for several months and is cold-hardy even compared to other tick species. It has a wide host range: over 60 different wild and domesticated hosts are known for the three active developmental stages. Its high adaptiveness gives an edge to this tick species as shown by new data on the emergence and establishment of D. reticulatus populations throughout Europe. The tick has been the research focus of a growing number of scientists, physicians and veterinarians. Within the Web of Science database, more than a fifth of the over 700 items published on this species between 1897 and 2015 appeared in the last three years (2013–2015). Here we attempt to synthesize current knowledge on the systematics, ecology, geographical distribution and recent spread of the species and to highlight the great spectrum of possible veterinary and public health threats it poses. Canine babesiosis caused by Babesia canis is a severe leading canine vector-borne disease in many endemic areas. Although less frequently than Ixodes ricinus, D. reticulatus adults bite humans and transmit several Rickettsia spp., Omsk haemorrhagic fever virus or Tick-borne encephalitis virus. We have not solely collected and reviewed the latest and fundamental scientific papers available in primary databases but also widened our scope to books, theses, conference papers and specialists colleagues’ experience where needed. Besides the dominant literature available in English, we also tried to access scientific literature in German, Russian and eastern European languages as well. We hope to inspire future research projects that are necessary to understand the basic life-cycle and ecology of this vector in order to understand and prevent disease threats. We conclude that although great strides have been made in our knowledge of the eco-epidemiology of this species, several gaps still need to be filled with basic research, targeting possible reservoir and vector roles and the key factors resulting in the observed geographical spread of D. reticulatus.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-016-1599-x) contains supplementary material, which is available to authorized users.
Grass snakes (Natrix natrix) represent one of the most widely distributed snake species of the Palaearctic region, ranging from the North African Maghreb region and the Iberian Peninsula through most of Europe and western Asia eastward to the region of Lake Baikal in Central Asia. Within N. natrix, up to 14 distinct subspecies are regarded as valid. In addition, some authors recognize big‐headed grass snakes from western Transcaucasia as a distinct species, N. megalocephala. Based on phylogenetic analyses of a 1984‐bp‐long alignment of mtDNA sequences (ND4+tRNAs, cyt b) of 410 grass snakes, a nearly range‐wide phylogeography is presented for both species. Within N. natrix, 16 terminal mitochondrial clades were identified, most of which conflict with morphologically defined subspecies. These 16 clades correspond to three more inclusive clades from (i) the Iberian Peninsula plus North Africa, (ii) East Europe and Asia and (iii) West Europe including Corso‐Sardinia, the Apennine Peninsula and Sicily. Hypotheses regarding glacial refugia and postglacial range expansions are presented. Refugia were most likely located in each of the southern European peninsulas, Corso‐Sardinia, North Africa, Anatolia and the neighbouring Near and Middle East, where the greatest extant genetic diversity occurs. Multiple distinct microrefugia are inferred for continental Italy plus Sicily, the Balkan Peninsula, Anatolia and the Near and Middle East. Holocene range expansions led to the colonization of more northerly regions and the formation of secondary contact zones. Western Europe was invaded from a refuge within southern France, while Central Europe was reached by two distinct range expansions from the Balkan Peninsula. In Central Europe, there are two contact zones of three distinct mitochondrial clades, and one of these contact zones was theretofore completely unknown. Another contact zone is hypothesized for Eastern Europe, which was colonized, like north‐western Asia, from the Caucasus region. Further contact zones were identified for southern Italy, the Balkans and Transcaucasia. In agreement with previous studies using morphological characters and allozymes, there is no evidence for the distinctiveness of N. megalocephala. Therefore, N. megalocephala is synonymized with N. natrix.
Hermann's tortoise (Testudo hermanni), the best‐known western Palaearctic tortoise species, has a rare natural distribution pattern comprising the Mediterranean areas of the Iberian, Apennine, and Balkan Peninsulas, as well as Sicily, Corsica and Sardinia. The western part of this range is traditionally considered habitat for T. h. hermanni, while T. h. boettgeri occurs in the Balkans. Taxonomy of this tortoise has been challenged in recent years, with the two subspecies being considered full species and the central Dalmatian populations of T. h. boettgeri being considered a third species, T. hercegovinensis. Using an mtDNA fragment approximately 1150 bp long (cytochrome b gene and adjacent portion of tRNA‐Thr gene), we investigated mtDNA diversity with regard to contrasting concepts of two subspecies or three species. Seven closely related haplotypes were identified from the western Mediterranean and 15 different, in part much‐differentiated, haplotypes from the Balkans. Western Mediterranean haplotypes differ from Balkan haplotypes in 16–42 mutation steps. One to seven mutation steps occur within western Mediterranean populations. Balkan haplotypes, differing in 1−37 nucleotides, group in parsimony network analysis into three major assemblages that display, in part, a similar degree of differentiation to that of western Mediterranean haplotypes relative to Balkan haplotypes. Rates of sequence evolution are different in both regions, and low divergence, palaeogeography and the fossil record suggest a slower molecular clock in the western Mediterranean. While monophyly in western Mediterranean haplotypes is well‐supported, conflicting evidence is obtained for Balkan haplotypes; maximum parsimony supports monophyly of Balkan haplotypes, but other phylogenetic analyses (Bayesian, ML, ME) indicate Balkan haplotypes could be paraphyletic with respect to the western Mediterranean clade. These results imply a process of differentiation not yet complete despite allopatry in the western Mediterranean and the Balkans, and suggest all populations of T. hermanni are conspecific. In the western Mediterranean no clear geographical pattern in haplotype distribution is found. Distribution of Balkan haplotypes is more structured. One group of similar haplotypes occurs in the eastern Balkans (Bulgaria, Republic of Macedonia, Romania and the Greek regions Evvia, Macedonia, Peloponnese, Thessaly and Thrace). Two distinct haplotypes, differing in eight to nine mutation steps from the most common haplotype of the first group, are confined to the western slope of the Taygetos Mts. in the Peloponnese. Yet another group, connected over between four and 23 mutation steps with haplotypes of the eastern Balkan group, occurs along the western slope of the Dinarid and Pindos Mts. (Istria, Dalmatia, western Greece). Taygetos haplotypes are nested within other haplotypes in all phylogenetic analyses and support for monophyly of the other Balkan groups is at best weak. We conclude that using the traditional two subspecies model should be contin...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.