Most current approaches in phylogenetic linguistics require as input multilingual word lists partitioned into sets of etymologically related words (cognates). Cognate identification is so far done manually by experts, which is time consuming and as of yet only available for a small number of well-studied language families. Automatizing this step will greatly expand the empirical scope of phylogenetic methods in linguistics, as raw wordlists (in phonetic transcription) are much easier to obtain than wordlists in which cognate words have been fully identified and annotated, even for under-studied languages. A couple of different methods have been proposed in the past, but they are either disappointing regarding their performance or not applicable to larger datasets. Here we present a new approach that uses support vector machines to unify different state-of-the-art methods for phonetic alignment and cognate detection within a single framework. Training and evaluating these method on a typologically broad collection of gold-standard data shows it to be superior to the existing state of the art.
This study explores a number of data-driven vector representations of the IPA-encoded sound segments for the purpose of sound sequence alignment. We test the alternative representations based on the alignment accuracy in the context of computational historical linguistics. We show that the data-driven methods consistently do better than linguistically-motivated articulatoryacoustic features. The similarity scores obtained using the data-driven representations in a monolingual context, however, performs worse than the state-of-the-art distance (or similarity) scoring methods proposed in earlier studies of computational historical linguistics. We also show that adapting representations to the task at hand improves the results, yielding alignment accuracy comparable to the state of the art methods.
This paper presents a computational analysis of Gondi dialects spoken in central India. We present a digitized data set of the dialect area, and analyze the data using different techniques from dialectometry, deep learning, and computational biology. We show that the methods largely agree with each other and with the earlier non-computational analyses of the language group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.