The morphology of self-assembled poly(vinyl alcohol)/silica (PVA/SiO2) nanocomposites is investigated with atomic force microscopy (AFM) and transmission electron microscopy (TEM). It is found that the SiO2 nanoparticles are homogenously distributed throughout the PVA matrix in a form of spherical nano-cluster. The average size of the SiO2 clusters is below 50 nm at the low contents (SiO2 < or =5 5 wt%), while particle aggregations are clearly observed and their average size markedly increases to 110 nm when 10 wt% SiO2 is loaded. The thermogravimetric analysis (TGA) shows that the nanocomposite significantly outperforms the pure PVA in the thermal resistance. By using a multi-heating-rate method, the thermal degradation kinetics of the nanocomposite with a SiO2 content of 5 wt% is compared to the PVA host. The reaction activation energy (E) of the nanocomposite, similar to the pure PVA, is divided into two main stages corresponding to two degradation steps. However, at a given degradation temperature, the nanocomposite presents much lower reaction velocity constants (k), while its E is 20 kJ/mol higher than that of the PVA host.
Protective coatings based on an Al-Al 2 O 3 metal matrix composite (MMC) were sprayed using dynamic metallization (DM), a low-pressure cold spray variant. A series of samples approximately 1 mm in thickness were sprayed using different spray process parameters (temperature, velocity) and different feedstock powder compositions (Al, Zn, Al 2 O 3 ). This resulted in MMCs of different phase compositions and slightly different physical conditions of coating formation. The through-thickness residual stresses that accumulate in coatings during the spray process were studied using neutron diffraction in all phases comprising the MMCs. The overall residual stress in the coating (macrostress) was compressive, which is in good agreement with the data on residual stress observed in other cold spray coatings, accumulating as a result of the peening process. However, due to the slightly elevated spray temperature characteristic of DM in comparison with other cold spray variants, thermal stresses are also present and play an equally important role in the accumulation of residual stress in each phase. Because of the multi-phase composition and thermal mismatch between the metal and ceramic components of the MMC, inter-phase microstresses also accumulate. A micro-mechanical explanation of the observed tensile microstress in Al/Zn versus compressive stress in Al 2 O 3 is proposed.
This research article presents a software module for the environmental impact assessment (EIA) of open pit mines. The EIA software module has been developed based on the comprehensive examination of both country-specific (namely, Kazakhstan) and current international regulatory frameworks, legislation and EIA methodologies. EIA frameworks and methods have been critically evaluated, and mathematical models have been developed and implemented in the GIS software module ‘3D Quarry’. The proposed methodology and software module allows for optimised EIA calculations of open pit mines, aiming to minimise the negative impacts on the environment. The study presents an original methodology laid out as a basis for a software module for environmental impact assessment on atmosphere, water basins, soil and subsoil, tailored to the context of mining operations in Kazakhstan. The proposed software module offers an alternative to commercial off-the-shelf software packages currently used in the mining industry and is suitable for small mining operators in post-Soviet countries. It is anticipated that applications of the proposed software module will enable the transition to sustainable development in the Kazakh mining industry.
New projective prototypes of scintillator/lead sandwich type sampling calorimeter Shashlik with silicon preshower detector have been constructed and tested with electron beam at CERN-SPS. The energy resolution is measured to be 8.7 %/ E(GeV) in stochastic term, 0.330/E(GeV) in noise term and 0.5 % in constant term. The angular resolution is better than 70 mrad/ E(GeV).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.