Most large (over a kilometre in diameter) near-Earth asteroids are now known, but recognition that airbursts (or fireballs resulting from nuclear-weapon-sized detonations of meteoroids in the atmosphere) have the potential to do greater damage 1 than previously thought has shifted an increasing portion of the residual impact risk (the risk of impact from an unknown object) to smaller objects 2 . Above the threshold size of impactor at which the atmosphere absorbs sufficient energy to prevent a ground impact, most of the damage is thought to be caused by the airburst shock wave 3 , but owing to lack of observations this is uncertain 4,5 . Here we report an analysis of the damage from the airburst of an asteroid about 19 metres (17 to 20 metres) in diameter southeast of Chelyabinsk, Russia, on 15 February 2013, estimated to have an energy equivalent of approximately 500 (6100) kilotons of trinitrotoluene (TNT, where 1 kiloton of TNT 54.185310 12 joules). We show that a widely referenced technique 4-6 of estimating airburst damage does not reproduce the observations, and that the mathematical relations 7 based on the effects of nuclear weapons-almost always used with this technique-overestimate blast damage. This suggests that earlier damage estimates 5,6 near the threshold impactor size are too high. We performed a global survey of airbursts of a kiloton or more (including Chelyabinsk), and find that the number of impactors with diameters of tens of metres may be an order of magnitude higher than estimates based on other techniques 8,9 . This suggests a non-equilibrium (if the population were in a long-term collisional steady state the size-frequency distribution would either follow a single power law or there must be a size-dependent bias in other surveys) in the near-Earth asteroid population for objects 10 to 50 metres in diameter, and shifts more of the residual impact risk to these sizes. for the Chelyabinsk airburst, based on indirect illumination measured from video records. The brightness is an average derived from indirect scattered sky brightness from six videos proximal to the airburst, corrected for the sensor gamma setting, autogain, range and airmass extinction, following the procedure used for other airburst light curves generated from video 24,25 . The light curve has been normalized using the US government sensor data peak brightness value of 2.7 3 10 13 W sr 21, corresponding to an absolute astronomical magnitude of 228 in the silicon bandpass. The individual video light curves deviate by less than one magnitude between times 22 and 11.5 with larger deviations outside this interval. Time zero corresponds to 03:20:32.2 UTC on 15 February 2013. b, The energy deposition per unit height for the Chelyabinsk airburst, based on video data. The conversion to absolute energy deposition per unit path length assumes a blackbody emission of 6,000 K and bolometric efficiency of 17%, the same as the assumptions used to convert earlier US government sensor information to energy 26 . The heights are computed us...
Earth is continuously colliding with fragments of asteroids and comets of various sizes. The largest encounter in historical times occurred over the Tunguska river in Siberia in 1908, producing an airburst of energy equivalent to 5-15 megatons of trinitrotoluene (1 kiloton of trinitrotoluene represents an energy of 4.185 × 10(12) joules). Until recently, the next most energetic airburst events occurred over Indonesia in 2009 and near the Marshall Islands in 1994, both with energies of several tens of kilotons. Here we report an analysis of selected video records of the Chelyabinsk superbolide of 15 February 2013, with energy equivalent to 500 kilotons of trinitrotoluene, and details of its atmospheric passage. We found that its orbit was similar to the orbit of the two-kilometre-diameter asteroid 86039 (1999 NC43), to a degree of statistical significance sufficient to suggest that the two were once part of the same object. The bulk strength--the ability to resist breakage--of the Chelyabinsk asteroid, of about one megapascal, was similar to that of smaller meteoroids and corresponds to a heavily fractured single stone. The asteroid broke into small pieces between the altitudes of 45 and 30 kilometres, preventing more-serious damage on the ground. The total mass of surviving fragments larger than 100 grams was lower than expected.
Abstract-We have assembled data on 13 cases of meteorite falls with accurate tracking data on atmospheric passage. In all cases, we estimate the bulk strength of the object corresponding to its earliest observed or inferred fragmentation in the high atmosphere, and can compare these values with measured strengths of meteorites in the taxonomic class for that fall. In all 13 cases, the strength corresponding to earliest observed or inferred fragmentation is much less than the compressive or tensile strength reported for that class of stony meteorites. Bulk strengths upon atmospheric entry of these bodies are shown to be very low, 0.1 to approximately 1 MPa on first breakup, and maximal strength on breakup as 1-10 MPa corresponding to weak and ''crumbly'' objects, whereas measured average tensile strength of the similar meteorite classes is about 30 MPa. We find a more random relation between bulk sample strength and sample mass than is suggested by a commonly used empirical power law. We estimate bulk strengths on entry being characteristically of the order of 10 )1 -10
Aims. The observation of Draconid meteors was used to infer information on the structure, porosity, strength, and composition of the dust of comet 21P/Giacobini-Zinner. Methods. Stereoscopic video and photographic observations of six faint and one bright Draconid meteors provided meteor morphologies, heights, light curves, and atmospheric decelerations. The spectrum of the bright meteor was also obtained. We developed a simple model of meteoroid ablation and fragmentation. The model assumes that cometary meteoroids are composed of constituent grains.Results. By fitting the observed decelerations and light curves, we have found that the grain mass range was relatively narrow in all meteoroids but differed from case to case. Some meteoroids were coarse grained with grain masses 10 −9 to 10 −10 kg, others were fine grained with grain masses one order of magnitude lower. Individual mm-sized meteoroids contained tens of thousands to almost a million grains (assuming grain density close to 3000 kg m −3 ). The meteoroids were porous aggregates of grains, having porosities of about 90% and bulk densities of 300 kg m −3 . Grain separation started after the surface of the meteoroid received energy of 10 6 J m −2 . The separation continued during the first half of meteor trajectories. We call this phase erosion. The energy needed for grain erosion was 15−30× lower than the energy of vaporization. However, 30% of the largest meteoroid was resistant to thermal erosion; this part disrupted later mechanically under a very low dynamic pressure of 5 kPa. The relative abundances of Na, Mg, and Fe were nearly chondritic, but differential ablation caused preferential loss of sodium at the beginning of the trajectory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.