Recently, we showed that generation of tumours in syngeneic mice by cells devoid of mitochondrial (mt) DNA (ρ0 cells) is linked to the acquisition of the host mtDNA. However, the mechanism of mtDNA movement between cells remains unresolved. To determine whether the transfer of mtDNA involves whole mitochondria, we injected B16ρ0 mouse melanoma cells into syngeneic C57BL/6Nsu9-DsRed2 mice that express red fluorescent protein in their mitochondria. We document that mtDNA is acquired by transfer of whole mitochondria from the host animal, leading to normalisation of mitochondrial respiration. Additionally, knockdown of key mitochondrial complex I (NDUFV1) and complex II (SDHC) subunits by shRNA in B16ρ0 cells abolished or significantly retarded their ability to form tumours. Collectively, these results show that intact mitochondria with their mtDNA payload are transferred in the developing tumour, and provide functional evidence for an essential role of oxidative phosphorylation in cancer.DOI:
http://dx.doi.org/10.7554/eLife.22187.001
Chemical communication is mediated by sex-biased signals abundantly present in the urine, saliva and tears. Because most studies concentrated on the urinary signals, we aimed to determine the saliva proteome in wild Mus musculus musculus, to extend the knowledge on potential roles of saliva in chemical communication. We performed the gel-free quantitative LC-MS/MS analyses of saliva and identified 633 proteins with 134 (21%) of them being sexually dimorphic. They include proteins that protect and transport volatile organic compounds in their beta barrel including LCN lipocalins, major urinary proteins (MUPs), and odorant binding proteins (OBPs). To our surprise, the saliva proteome contains one MUP that is female biased (MUP8) and the two protein pheromones MUP20 (or ‘Darcin’) and ESP1 in individuals of both sex. Thus, contrary to previous assumptions, our findings reveal that these proteins cannot function as male-unique signals. Our study also demonstrates that many olfactory proteins (e.g. LCNs, and OBPs) are not expressed by submandibular glands but are produced elsewhere–in nasal and lacrimal tissues, and potentially also in other oro-facial glands. We have also detected abundant proteins that are involved in wound healing, immune and non-immune responses to pathogens, thus corroborating that saliva has important protective roles.
Major urinary proteins (MUPs) are highly polymorphic proteins that have been shown to perform several important functions in the chemical communication of the house mouse, Mus musculus. Production of these proteins in C57Bl/6 females is cyclic, reaching the maximum just before the beginning of estrus. Social environment is an important factor that increases MUP production in both sexes. We examined responsiveness of MUP production to social stimuli in wild mice, Mus musculus musculus. The direction of change of MUP production in males depended on the sex of the stimulus animal. Males up-regulated MUP production when caged with a female, but down-regulated MUP production when caged with a male. Down-regulation was more pronounced in males that were defeated in a male-male encounter. Females responded to a male's presence with a decrease in MUP production. We conclude that social modulation of MUP production is specific and, in coordination with other mechanisms, facilitates adjustment of the animal's odor profile to different social contexts. Our results also suggest that in males, MUPs may play an important role in advertizing the male's quality to females. Furthermore, we highlight the importance of analyzing data corrected with creatinine, which show MUP production on the (post)translational level as well as raw data (non-corrected with creatinine), which represent actual concentrations of MUPs in the urine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.