Many of true bugs are important insect pests to cultivated crops and some are important vectors of human diseases, but few cladistic analyses have addressed relationships among the seven infraorders of Heteroptera. The Enicocephalomorpha and Nepomorpha are consider the basal groups of Heteroptera, but the basal-most lineage remains unresolved. Here we report the mitochondrial genome of the unique-headed bug Stenopirates sp., the first mitochondrial genome sequenced from Enicocephalomorpha. The Stenopirates sp. mitochondrial genome is a typical circular DNA molecule of 15, 384 bp in length, and contains 37 genes and a large non-coding fragment. The gene order differs substantially from other known insect mitochondrial genomes, with rearrangements of both tRNA genes and protein-coding genes. The overall AT content (82.5%) of Stenopirates sp. is the highest among all the known heteropteran mitochondrial genomes. The strand bias is consistent with other true bugs with negative GC-skew and positive AT-skew for the J-strand. The heteropteran mitochondrial atp8 exhibits the highest evolutionary rate, whereas cox1 appears to have the lowest rate. Furthermore, a negative correlation was observed between the variation of nucleotide substitutions and the GC content of each protein-coding gene. A microsatellite was identified in the putative control region. Finally, phylogenetic reconstruction suggests that Enicocephalomorpha is the sister group to all the remaining Heteroptera.
Heteroptera are among the most diverse hemimetabolous insects. Seven infraorders have been recognized within this suborder of Hemiptera. Apart from the well-established sister-group relationship between Cimicomorpha and Pentatomomorpha (= Terheteroptera), the two terminal lineages, the relationships among the other five infraorders are still controversial, of which three (Gerromorpha, Nepomorpha and Leptopodomorpha) are intimately connected to aquatic environments. However, the various and often conflicting available phylogeny hypotheses do not offer a clear background for a connection between diversification and palaeoenvironments. In this study, a molecular data set representing 79 taxa and 10 149 homologous sites is used to infer the phylogenetic relationships within Heteroptera. Bayesian inference, maximum-likelihood and maximum parsimony analyses were employed. The results of phylogenetic inferences largely confirm the widely accepted phylogenetic context. Estimation of the divergence time based on the phylogenetic results revealed that Gerromorpha, Nepomorpha and Leptopodomorpha originated successively during the period from the Late Permian to Early Triassic . This timescale is consistent with the origin and radiation time of various aquatic holometabolans. Our results indicate that the aquatic and semi-aquatic true bugs evolved under environmental conditions of high air temperature and humidity in an evolutionary scenario similar to that of the aquatic holometabolans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.