The problem of optimal trajectory planning of the unmanned underwater vehicle (UUV) is considered and analytically solved. The task is to minimize the risk of detection of the moving object by a static sonar while moving between two given points on a plane. The detection is based on the primary acoustic field radiated by the object with a non-uniform radiation pattern. In the first part of the article, the probability of non-detection is derived. Further, it is used as an optimization criterion. The non-uniform radiation pattern of the object differentiates this work from previous research in the area. The optimal trajectory and velocity law of the moving object are found, as well as the criterion value on it.
This article considers the mathematical aspects of the problem of the optimal interception of a mobile search vehicle moving along random tacks on a given route and searching for a target, which travels parallel to this route. Interception begins when the probability of the target being detected by the search vehicle exceeds a certain threshold value. Interception was carried out by a controlled vehicle (defender) protecting the target. An analytical estimation of this detection probability is proposed. The interception problem was formulated as an optimal stochastic control problem, which was transformed to a deterministic optimization problem. As a result, the optimal control law of the defender was found, and the optimal interception time was estimated. The deterministic problem is a simplified version of the problem whose optimal solution provides a suboptimal solution to the stochastic problem. The obtained control law was compared with classic guidance methods. All the results were obtained analytically and validated with a computer simulation.
This paper considers the appearance of indications of useful acoustic signals in the signal/noise mixture. Various information characteristics (information entropy, Jensen–Shannon divergence, spectral information divergence and statistical complexity) are investigated in the context of solving this problem. Both time and frequency domains are studied for the calculation of information entropy. The effectiveness of statistical complexity is shown in comparison with other information metrics for different signal-to-noise ratios. Two different approaches for statistical complexity calculations are also compared. In addition, analytical formulas for complexity and disequilibrium are obtained using entropy variation in the case of signal spectral distribution. The connection between the statistical complexity criterion and the Neyman–Pearson approach for hypothesis testing is discussed. The effectiveness of the proposed approach is shown for different types of acoustic signals and noise models, including colored noises, and different signal-to-noise ratios, especially when the estimation of additional noise characteristics is impossible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.