A visual appearance of natural materials fundamentally depends on illumination conditions, which significantly complicates a real scene analysis. We propose textural features based on fast Markovian statistics, which are simultaneously invariant to illumination colour and robust to illumination direction. No knowledge of illumination conditions is required and a recognition is possible from a single training image per material. Material recognition is tested on the currently most realistic visual representation -Bidirectional Texture Function (BTF), using the Amsterdam Library of Textures (ALOT), which contains 250 natural materials acquired in different illumination conditions. Our proposed features significantly outperform several leading alternatives including Local Binary Patterns (LBP, LBP-HF) and Gabor features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.