Nowadays the challenge for humanity is to find pathways towards sustainable development. Decision makers require a set of sustainability indicators to know if the sustainability strategies are following those pathways. There are more than one hundred sustainability indicators but they differ on their relative importance according to the size of the locality and change on time. The resources needed to follow these sustainability indicators are scarce and in some instances finite, especially in smaller regions. Therefore strategies to select set of these indicators are useful for decision makers responsible for monitoring sustainability. In this paper we propose a model for the identification and selection of a set of sustainability indicators that adequately represents human systems. In developing this model, we applied evolutionary dynamics in a space where sustainability indicators are fundamental entities interconnected by an interaction matrix. we used a fixed interaction that simulates the current context for the city of Cuernavaca, México as an example. We were able to identify and define relevant sets indicators for the system by using the Pareto principle. In this case we identified a set of sixteen sustainability indicators with more than 80% of the total strength. This set presents resilience to perturbations. For the Tangled Nature framework we provided a manner of treating different contexts (i.e., cities, counties, states, regions, countries, continents or the whole planet), dealing with small dimensions. This model provides decision makers with a valuable tool to select sustainability indicators set for towns, cities, regions, countries, continents or the entire planet according to a coevolutionary framework. The social legitimacy can arise from the fact that each individual indicator must be selected from those that are most important for the subject community.
Policy-makers require strategies to select a set of sustainability indicators that are useful for monitoring sustainability. For this reason, we have developed a model where sustainability indicators compete for the attention of society. This model has shown to have steady situations where a set of sustainability indicators are stable. To understand the role of the network configuration, in this paper we analyze the network properties of the Entangled Sustainability model. We have used the degree distribution, the clustering coefficient, and the interaction strength distribution as main measures. We also analyze the network properties for scenarios compared against randomly generated scenarios. We found that the stable situations show different characteristics from the unstable transitions present in the model. We also found that the complex emergent feature of sustainability shown in the model is an attribute of the scenarios, however, the randomly generated scenarios do not present the same network properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.