In this paper, the authors consider the current state and level of implementation of building information modeling applied to transport infrastructure at the stages of their life cycle in Russia and abroad. Possible prerequisites for the transfer of knowledge and technologies of building information modeling from the civil and industrial facilities to the field of transport construction are highlighted according to the accumulated experience in the design, construction and operation of such facilities in various countries and Russia. Special emphasis is placed on examples of the world’s largest implemented or ongoing projects for the construction of transport infrastructure. The experience of implementing these projects was analyzed from the point of view of the software used in relation to all stages of the life cycle of transport infrastructure objects: design, construction and subsequent operation. The prospects for the development of data exchange formats in the context of the existing problem of mutual integration of BIM and GIS for transport infrastructure objects to ensure their complementarity and compatibility are also considered. The functional levels of the use of various software within the framework of companies implementing project activities using information modeling technologies are highlighted. A list of criteria characterizing the level of information modeling technologies integration to transport infrastructure objects into the activities of participants in the life cycle of these objects is highlighted. A review of the regulatory framework of information modeling in construction in Russia is carried out, and the main differences in this area with the regulatory regulation of this area in the European Union are noted. Conclusions are made about the key reference points for the development of information modeling of transport infrastructure facilities on a national scale, leading customer companies and contractors.
In modern construction at the stages of investment assessment, design, construction and operation of capital construction facilities with the implemented information modeling system, a serious problem is the harmonization of data collected from the construction site on the geometric parameters of the facility and territory being built. The article presents a comprehensive scientific and technical solution in the field of diagnostics of buildings and structures, monitoring the progress of construction, as well as automated determination of the volume of construction work performed using remote sensing technologies using unmanned aerial vehicles and information modeling (BIM technologies).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.