Aneuploidy is a ubiquitous feature of human tumors, but the acquisition of aneuploidy is typically detrimental to cellular fitness. To investigate how aneuploidy could contribute to tumor growth, we triggered periods of chromosomal instability (CIN) in human cells and then exposed them to a variety of different culture environments. While chromosomal instability was universally detrimental under normal growth conditions, we discovered that transient CIN reproducibly accelerated the ability of cells to adapt and thrive in the presence of anti-cancer therapeutic agents. Single-cell sequencing revealed that these drug-resistant populations recurrently developed specific whole-chromosome gains and losses. We independently derived one aneuploidy that was frequently recovered in cells exposed to paclitaxel, and we found that this chromosome loss event was sufficient to decrease paclitaxel sensitivity. Finally, we demonstrated that intrinsic levels of CIN correlate with poor responses to a variety of systemic therapies in a collection of patient-derived xenografts. In total, our results show that while chromosomal instability generally antagonizes cell fitness, it also provides phenotypic plasticity to cancer cells that can allow them to adapt to diverse stressful environments. Moreover, our findings suggest that aneuploidy may function as an under-explored cause of therapy failure in human tumors.
Lipidated cyclopropenes serve as useful bioorthogonal reagents for imaging cell membranes due to the cyclopropene’s small size and ability to ligate with pro-fluorescent tetrazines. Previously, the lipidation of cyclopropenes required modification at the C3 position because methods to append lipids at C1/C2 were not available. Herein, we describe C1/C2 lipidation with the biologically active lipid ceramide and a common phospholipid using a cyclopropene scaffold whose reactivity with 1,2,4,5-tetrazines has been caged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.