In the present study, the streamflow simulation capacities between the Soil and Water Assessment Tool (SWAT) and the Hydrologic Engineering Centre-Hydrologic Modelling System (HEC-HMS) were compared for the Huai Bang Sai (HBS) watershed in northeastern Thailand. During calibration (2007–2010) and validation (2011–2014), the SWAT model demonstrated a Coefficient of Determination (R2) and a Nash Sutcliffe Efficiency (NSE) of 0.83 and 0.82, and 0.78 and 0.77, respectively. During the same periods, the HEC-HMS model demonstrated values of 0.80 and 0.79, and 0.84 and 0.82. The exceedance probabilities at 10%, 40%, and 90% were 144.5, 14.5, and 0.9 mm in the flow duration curves (FDCs) obtained for observed flow. From the HEC-HMS and SWAT models, these indices yielded 109.0, 15.0, and 0.02 mm, and 123.5, 16.95, and 0.02 mm. These results inferred those high flows were captured well by the SWAT model, while medium flows were captured well by the HEC-HMS model. It is noteworthy that the low flows were accurately simulated by both models. Furthermore, dry and wet seasonal flows were simulated reasonably well by the SWAT model with slight under-predictions of 2.12% and 13.52% compared to the observed values. The HEC-HMS model under-predicted the dry and wet seasonal flows by 10.76% and 18.54% compared to observed flows. The results of the present study will provide valuable recommendations for the stakeholders of the HBS watershed to improve water usage policies. In addition, the present study will be helpful to select the most appropriate hydrologic model for humid tropical watersheds in Thailand and elsewhere in the world.
Accurate rainfall estimates are important in many hydrologic activities. Rainfall data are retrieved from rain gauges (RGs), satellites, radars, and re-analysis products. The accuracy of gauge-based gridded precipitation products (GbGPPs) relies on the distribution of RGs and the quality of rainfall data records obtained from these. The accuracy of satellite-based precipitation products (SbPPs) depends on many factors, including basin climatology, basin topography, precipitation mechanism, etc. The hydrologic utility of different precipitation products was examined in many developed regions; however, less focused on the developing world. The Huai Bang Sai (HBS) watershed in north-eastern Thailand is a less focused but an important catchment that significantly contributes to the water resources in Thailand. Therefore, this research presents the investigation results of the hydrologic utility of SbPPs and GbGPPs in the HBS watershed. The efficiency of nine SbPPs (including 3B42, 3B42-RT, PERSIANN, PERSIANN-CCS, PERSIANN-CDR, CHIRPS, CMORPH, IMERG, and MSWEP) and three GbGPPs (including APHRODITE_V1801, APHRODITE_V1901, and GPCC) was examined by simulating streamflow of the HBS watershed through the Soil & Water Assessment Tool (SWAT), hydrologic model. Subsequently, the streamflow simulation capacity of the hydrological model for different precipitation products was compared against observed streamflow records by using the same set of calibrated parameters used for an RG simulated scenario. The 3B42 product outperformed other SbPPS with a higher Nash–Sutcliffe Efficiency (NSEmonthly>0.55), while APHRODITE_V1901 (NSEmonthly>0.53) performed fairly well in the GbGPPs category with closer agreements with observed streamflow. In addition, the CMORPH precipitation product has not performed well in capturing observed rainfall and subsequently in simulating streamflow (NSEmonthly<0) of the HBS. Furthermore, MSWEP and CHIRPS products have performed fairly well during calibration; however, they showcased a lowered performance for validation. Therefore, the results suggest that accurate precipitation data is the major governing factor in streamflow modeling performances. The research outcomes would capture the interest of all stakeholders, including farmers, meteorologists, agriculturists, river basin managers, and hydrologists for potential applications in the tropical humid regions of the world. Moreover, 3B42 and APHRODITE_V1901 precipitation products show promising prospects for the tropical humid regions of the world for hydrologic modeling and climatological studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.