Acetylation status of DNA end joining protein Ku70 dictates its function in DNA repair and Bax-mediated apoptosis. Despite the knowledge of HDACs and HATs that are reported to modulate the acetylation dynamics of Ku70, very little is known about proteins that critically coordinate these key modifications. Here, we demonstrate that nuclear matrix-associated protein scaffold/matrix-associated region-binding protein 1 (SMAR1) is a novel interacting partner of Ku70 and coordinates with HDAC6 to maintain Ku70 in a deacetylated state. Our studies revealed that knockdown of SMAR1 results in enhanced acetylation of Ku70, which leads to impaired recruitment of Ku70 in the chromatin fractions. Interestingly, ionizing radiation (IR) induces the expression of SMAR1 and its redistribution as distinct nuclear foci upon ATM-mediated phosphorylation at serine 370. Furthermore, SMAR1 regulates IR-induced G2/M cell cycle arrest by facilitating Chk2 phosphorylation. Alternatively, SMAR1 provides radioresistance by modulating the association of deacetylated Ku70 with Bax, abrogating the mitochondrial translocation of Bax. Thus, we provide mechanistic insights of SMAR1-mediated regulation of repair and apoptosis via a complex crosstalk involving Ku70, HDAC6 and Bax.
Background: GAD65 (Glutamic acid decarboxylase 65 KDa isoform) is one of the most important auto-antigens involved in Type 1 diabetes induction. Although it serves as one of the first injury markers of β-islets, the mechanisms governing GAD65 expression remain poorly understood. Since the regulation of GAD65 is crucial for the proper functioning of insulin secreting cells, we investigated the stress induced regulation of GAD65 transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.