Cold acclimatized organisms produce antifreeze proteins that prevent ice growth and recrystallization at subfreezing conditions. Flatness and rigidity of the ice-binding sites of antifreeze proteins are considered key for their recognition of ice. However, the most potent synthetic ice recrystallization inhibitor (IRI) found to date is poly(vinyl alcohol) (PVA), a fully flexible molecule. The ability to tune the architecture and functionalization of PVA makes it a promising candidate to replace antifreeze proteins in industrial applications ranging from cryopreservation of organs to deicing of turbine blades. However, an understanding of how does PVA recognize ice remains elusive, hampering the design of more effective IRIs. Here we use large-scale molecular simulations to elucidate the mechanism by which PVA recognizes ice. We find that the polymer selectively binds to the prismatic faces of ice through a cooperative zipper mechanism. The binding is driven by hydrogen bonding, facilitated by distance matching between the hydroxyl groups of PVA and water molecules at the ice surface. Strong, cooperative binding to ice results from the different scaling of the free energy gains on binding per monomer and the loss of translational and configurational entropy of the chain. We explain why branching of PVA does not improve its IRI activity and use the new molecular understanding to propose principles for the design of macromolecules that bind efficiently to the basal and prismatic planes of ice, producing hyperactive synthetic antifreeze molecules that could compete with the most effective antifreeze proteins.
Cold-adapted organisms produce antifreeze proteins and glycoproteins to control the growth, melting and recrystallization of ice. It has been proposed that these molecules pin the crystal surface, creating a curvature that arrests the growth and melting of the crystal. Here we use thermodynamic modeling and molecular simulations to demonstrate that the curvature of the superheated or supercooled surface depends on the temperature and distances between ice-binding molecules, but not the details of their interactions with ice. We perform simulations of ice pinned with the antifreeze protein TmAFP, polyvinyl alcohol with different degrees of polymerization, and model ice-binding molecules to determine the thermal hystereses on melting and freezing, i.e. the maximum curvature that can be attained before, respectively, ice melts or grows irreversibly over the ice-binding molecules. We find that the thermal hysteresis is controlled by the bulkiness of the ice-binding molecules and their footprint at the ice surface. We elucidate the origin of the asymmetry between freezing and melting hysteresis found in experiments and propose guidelines to design synthetic antifreeze molecules with potent thermal hysteresis activity.
Ice recrystallization inhibitors (IRI) are of critical importance in biology, cryopreservation of cells and organs, and frozen foods. Antifreeze glycoproteins (AFGPs) are the most potent IRI. Their cost and cytotoxicity drive the design of synthetic flexible polymers that mimic their function. Poly(vinyl alcohol) (PVA) is the most potent biomimetic found to date, although it is orders of magnitude less potent than AFGPs. A lack of molecular understanding of the factors that limit the IRI efficiency of PVA and other flexible ice-binding polymers hinders the design of more potent IRI. Here, we use molecular and numerical simulations to elucidate how the degree of polymerization (DP) and functionalization of PVA impact its IRI. Our simulations indicate that the onset of IRI activity of PVA occurs for 15 < DP < 20, in agreement with experiments. We predict that polymers with stronger binding to ice per monomer attain IRI activity at lower DP and identify this as a contributor to the higher IRI potency of AFGPs. The simulations reveal that the limiting step for binding of flexible molecules to ice is not the alignment of the molecule to the surface or the initiation of the binding but the propagation to reach its full binding potential. This distinguishes AFGPs and PVA from rigid antifreeze proteins and, we argue, is responsible for their different scaling of efficiencies with molecular size. We use the analysis of PVA to identify the factors that control the IRI activity of flexible polymers and assess the molecular characteristics that endow AFGPs with their exceptional IRI potency.
Clathrate hydrates can spontaneously form under typical conditions found in oil and gas pipelines. The agglomeration of clathrates into large solid masses plugs the pipelines, posing adverse safety, economic, and environmental threats. Surfactants are customarily used to prevent the aggregation of clathrate particles and their coalescence with water droplets. It is generally assumed that a large contact angle between the surfactant-covered clathrate and water is a key predictor of the antiagglomerant performance of the surfactant. Here we use molecular dynamic simulations to investigate the structure and dynamics of surfactant films at the clathrate–oil interface, and their impact on the contact angle and coalescence between water droplets and hydrate particles. In agreement with the experiments, the simulations predict that surfactant-covered clathrate–oil interfaces are oil wet but super-hydrophobic to water. Although the water contact angle determines the driving force for coalescence, we find that a large contact angle is not sufficient to predict good antiagglomerant performance of a surfactant. We conclude that the length of the surfactant molecules, the density of the interfacial film, and the strength of binding of its molecules to the clathrate surface are the main factors in preventing the coalescence and agglomeration of clathrate particles with water droplets in oil. Our analysis provides a molecular foundation to guide the molecular design of effective clathrate antiagglomerants.
The slow nucleation of clathrate hydrates is a central challenge for their use in the storage and transportation of natural gas. Molecules that strongly adsorb to the clathrate-water interface decrease the crystal-water surface tension, lowering the barrier for clathrate nucleation. Surfactants are widely used to promote the nucleation and growth of clathrate hydrates. It has been proposed that these amphiphilic molecules bind to the clathrate surface via hydrogen bonding. However, recent studies reveal that PVCap, an amphiphilic polymer, binds to clathrates through hydrophobic moieties. Here we use molecular dynamic simulations and theory to investigate the mode and strength of binding of surfactants to the clathrate-water interface and their effect on the nucleation rate. We find that the surfactants bind to the clathrate-water interface exclusively through their hydrophobic tails. The binding is strong, driven by the entropy of dehydration of the alkyl chain, as it penetrates empty cavities at the hydrate surface. The hydrophobic attraction of alkyl groups to the clathrate surface also results in strong adsorption of alkanes. We identify two regimes for the binding of surfactants as a function of their density at the hydrate surface, which we interpret to correspond to the two steps of the Langmuir adsorption isotherm observed in experiments. Our results indicate that hydrophobic attraction to the clathrate-water interface is key for the design of soluble additives that promote the nucleation of hydrates. We use the calculated adsorption coefficients to estimate the concentration of sodium dodecyl sulfate (SDS) required to reach nucleation rates for methane hydrate consistent with those measured in experiments. To our knowledge, this study is the first to quantify the effect of surfactant concentration in the nucleation rate of clathrate hydrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.