In Drosophila, neuropeptide Pigment Dispersing Factor (PDF) is expressed in small and large ventral Lateral Neurons (sLNv and lLNv), among which sLNv are critical for activity rhythms in constant darkness. Studies show that this is mediated by rhythmic accumulation and likely secretion of PDF from sLNv dorsal projections, which in turn synchronises molecular oscillations in downstream circadian neurons. Using targeted expression of a neurodegenerative protein Huntingtin in LNv, we evoke a selective loss of neuropeptide PDF and clock protein PERIOD from sLNv soma. However, PDF is not lost from sLNv dorsal projections and lLNv. These flies are behaviourally arrhythmic in constant darkness despite persistence of PDF oscillations in sLNv dorsal projections and synchronous PERIOD oscillations in downstream circadian neurons. We find that PDF oscillations in sLNv dorsal projections are not sufficient for sustenance of activity rhythms in constant darkness and this is suggestive of an additional component that is possibly dependent on sLNv molecular clock and PDF in sLNv soma. Additionally, despite loss of PERIOD in sLNv, their activity rhythms entrain to light/dark cycles indicating that sLNv molecular clocks are not necessary for entrainment. Under constant light, these flies lack PDF from both soma and dorsal projections of sLNv, and when subjected to light/dark cycles, show morning and evening anticipation and accurately phased morning and evening peaks. Thus, under light/dark cycles, PDF in sLNv is not necessary for morning anticipation.
Circadian disturbances are early features of neurodegenerative diseases, including Huntington's Disease (HD). Emerging evidence suggests that circadian decline feeds into neurodegenerative symptoms, exacerbating them. Therefore, we asked whether known neurotoxic modifiers can suppress circadian dysfunction. We performed a screen of neurotoxicity-modifier genes to suppress circadian behavioural arrhythmicity in a Drosophila circadian HD model. The molecular chaperones HSP40 and HSP70 (Heat Shock Protein) emerged as significant suppressors in the circadian context, with HSP40 being the more potent mitigator. Upon HSP40 overexpression in the Drosophila circadian ventrolateral neurons (LNv), the behavioural rescue was associated with neuronal rescue of loss of circadian proteins from small LNv soma. Specifically, there was a restoration of the molecular clock protein Period and its oscillations in young flies and a long-lasting rescue of the output neuropeptide Pigment Dispersing Factor. Significantly, there was a reduction in the expanded Huntingtin inclusion load, concomitant with the appearance of a spot-like Huntingtin form. Thus, we provide evidence implicating the neuroprotective chaperone HSP40 in circadian rehabilitation. The involvement of molecular chaperones in circadian maintenance has broader therapeutic implications for neurodegenerative diseases.
Circadian disturbances are early features of neurodegenerative diseases, including Huntington's Disease (HD), affecting the quality of life of patients and caregivers. Emerging evidence suggests that circadian decline feeds-forward to neurodegenerative symptoms, exacerbating them, highlighting a need for restoring circadian health. Therefore, we asked whether any of the known neurotoxic modifiers can suppress circadian dysfunction. We performed a screen of neurotoxicity-modifier genes to suppress circadian behavioural arrhythmicity in a Drosophila circadian HD model. Notably, the molecular chaperones HSP40 and HSP70 (Heat Shock Protein) emerged as significant suppressors in the circadian context, with HSP40 being the more potent mitigator of HD-induced deficits. Upon HSP40 overexpression in the Drosophila circadian ventrolateral neurons (LNv), the behavioural rhythm rescue was associated with neuronal rescue of loss in circadian proteins from small LNv soma. Specifically, there was a restoration of the molecular clock protein Period and its oscillations in young flies and a long-lasting rescue of the output neuropeptide Pigment Dispersing Factor. Significantly, there was a reduction in the expanded Huntingtin inclusion load, concomitant with the appearance of a spot-like Huntingtin form. Thus, we provide evidence for the first time that implicates the neuroprotective chaperone HSP40 in circadian rehabilitation. Given the importance of proteostasis and circadian health in neurodegenerative diseases, the involvement of molecular chaperones in circadian maintenance has broader therapeutic implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.