Introduction: Few interspecies comparisons of alveolar bone have been documented, and this knowledge gap raises questions about which animal models most accurately represent human dental conditions or responses to surgical interventions. Objectives: The objective of this study was to employ state-of-the-art quantitative metrics to directly assess and compare the structural and functional characteristics of alveolar bone among humans, mini pigs, rats, and mice. Methods: The same anatomic location (i.e., the posterior maxillae) was analyzed in all species via micro–computed tomographic imaging, followed by quantitative analyses, coupled with histology and immunohistochemistry. Bone remodeling was evaluated with alkaline phosphatase activity and tartrate-resistant acid phosphatase staining to identify osteoblast and osteoclast activities. In vivo fluorochrome labeling was used as a means to assess mineral apposition rates. Results: Collectively, these analyses demonstrated that bone volume differed among the species, while bone mineral density was equal. All species showed a similar density of alveolar osteocytes, with a highly conserved pattern of collagen organization. Collagen maturation was equal among mouse, rat, and mini pig. Bone remodeling was a shared feature among the species, with morphologically indistinguishable hemiosteonal appearances, osteocytic perilacunar remodeling, and similar mineral apposition rates in alveolar bone. Conclusions: Our analyses demonstrated equivalencies among the 4 species in a plurality of the biological features of alveolar bone. Despite contradictory results from older studies, we found no evidence for the superiority of pig models over rodent models in representing human bone biology. Knowledge Transfer Statement: Animal models are extensively used to evaluate bone tissue engineering strategies, yet there are few state-of-the-art studies that rigorously compare and quantify the factors influencing selection of a given animal model. Consequently, there is an urgent need to assess preclinical animal models for their predictive value to dental research. Our article addresses this knowledge gap and, in doing so, provides a foundation for more effective standardization among animal models commonly used in dentistry.
Epithelia of the oral cavity exhibit variations in morphologies and turnover rates. Are these differences related to environment or to region-specific stem cell populations? A lineage-tracing strategy allowed visualization of Wnt-responsive cells, and their progeny, in the hard and soft palates. In both anatomic locations, Wnt-responsive basal cells self-renewed and gave rise to supra-basal cells. Palatal injuries triggered an enlargement of this population, and their descendants were responsible for wound re-epithelialization. Compared with the hard palate, soft palate stem cells exhibited an earlier, more robust burst in proliferation, culminating in significantly faster repair. Thereafter, excess Wnt-responsive basal cells were removed, and stem cell numbers were restored back to homeostatic level. Thus, we uncovered a stem cell population in oral mucosa, and its relative abundance is correlate with the rate of oral wound healing. Besides the activation during injury, an endogenous mechanism exists to constrain the stem cell pool after repair.
Background: in an effort to identify and validate which animal models are best suited for dental implant research, we used multiscale analyses to examine tooth extraction wound healing in a well-accepted model, the Yucatan mini pig and a more controversial model, the laboratory mouse. Methods: first molar extractions were performed in adult, skeletally mature mini pigs and mice. Alveolar bone repair was evaluated at early, intermediate and late timepoints using quantitative micro-computed tomographic (CT) imaging, histology, molecular, and cellular assays. Vital dye labeling was employed to quantify mineral apposition rates (MAR) in both species. Results: Despite a 3000-fold difference in weight, the relative proportions of the mini pig and murine maxillae and are equivalent. Quantitative CT demonstrated that within the posterior alveolar bone, the volume of mineralized bone was lower in mini pig than in the mice; during healing, however, the bone volume fraction was equivalent. The histologic appearance of healing sites was also comparable, and alkaline phosphatase (ALP) and tartrate resistant acid phosphatase (TRAP) staining showed a similar temporal and spatial distribution of bone remodeling. Vital dye labeling indicated equivalent MAR between the species. The absolute duration of the healing period differed: in mice, complete healing was accomplished in ∼21 days. In mini pigs, the same process took four times longer. Conclusions: Extraction socket healing is histologically equivalent between mini pigs and mice, supporting the hypothesis that the underlying mechanisms of alveolar bone healing are conserved among species.
Background The rate of reparative osteogenesis controls when an implant is sufficiently stable as to allow functional loading. Using a mini pig model, the rate of reparative osteogenesis in two types of implant sites for example, an osteotomy versus a fresh extraction socket were compared. Methods Eight adult mini pigs were used for the study. In phase I, three premolars were extracted on one side of the oral cavity; 12 weeks later, in phase II, osteotomies were produced in healed extraction sites, and contralateral premolars were extracted. Animals were sacrificed 1, 5, and 12 weeks after phase II. Bone repair and remodeling were evaluated using quantitative micro‐computed tomographic imaging, histology, and histochemical assays coupled with quantitative dynamic histomorphometry. Results One week after surgery, extraction sockets and osteotomy sites exhibited similar patterns of new bone deposition. Five weeks after surgery, mineral apposition rates (MARs) were elevated at the injury sites relative to intact bone. Twelve weeks after surgery, the density of new bone in both injury sites was equivalent to intact bone but quantitative dynamic histomorphometry and cellular activity assays demonstrated bone remodeling was still underway. Conclusions The mechanisms and rates of reparative osteogenesis were equivalent between fresh extraction sockets and osteotomies. The volume of new bone required to fill a socket, however, was significantly greater than the volume required to fill an osteotomy. These data provide a framework for estimating the rate of reparative osteogenesis and the time to loading of implants placed in healed sites versus fresh extraction sockets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.