Recent studies have demonstrated a previously unrecognized contribution of T-type Ca 2ϩ channels in peripheral sensory neurons to pain sensation (nociception). However, the cellular mechanisms underlying the functions of these channels in nociception are not known. Here, in both acutely dissociated and intact rat dorsal root ganglion neurons, we characterize a novel subpopulation of capsaicin-and isolectin B 4 -positive nociceptors that also expresses a high density of T-type Ca 2ϩ currents. Using these "T-rich" cells as a model, we demonstrate that the endogenous reducing agent L-cysteine lowers the threshold for nociceptor excitability and induces burst firing by increasing the amplitude of T-type currents and shifting the gating parameters of T-type channels. These findings, which provide the first direct evidence of T-type Ca 2ϩ channel involvement in the control of nociceptor excitability, suggest that endogenous T-type channel agonists may sensitize a unique subpopulation of peripheral nociceptors, consequently influencing pain processing under normal or pathological conditions.
Background
Clinically used general anesthetics, alone or in combination, are damaging to the developing mammalian brain. In addition to causing widespread apoptotic neurodegeneration in vulnerable brain regions, exposure to general anesthesia at the peak of synaptogenesis causes learning and memory deficiencies later in life. Our in-vivo rodent studies have suggested that activation of the intrinsic (mitochondria-dependent) apoptotic pathway is the earliest warning sign of neuronal damage, suggesting that a disturbance in mitochondrial integrity and function could be the earliest triggering events.
Methods
Since proper and timely mitochondrial morphogenesis is critical for brain development, we examined the long-term effects of a commonly used anesthesia combination (isoflurane, nitrous oxide, and midazolam) on the regional distribution, ultrastructural properties, and electron transport chain function of mitochondria, as well as synaptic neurotransmission, in the subiculum of rat pups.
Results
This anesthesia, administered at the peak of synaptogenesis, causes protracted injury to mitochondria, including significant enlargement of mitochondria (over 30%, p < 0.05), impairment of their structural integrity, about 28% increase in their complex IV activity (p < 0.05) and two-fold decrease in their regional distribution in presynaptic neuronal profiles (p < 0.05) where their presence is crucially important for the normal development and functioning of synapses. Consequently, we showed that impaired mitochondrial morphogenesis is accompanied by heightened autophagic activity, decrease in mitochondrial density (about 27%, p < 0.05) and long-lasting disturbances in inhibitory synaptic neurotransmission. The interrelation of these phenomena remains to be established.
Conclusion
Developing mitochondria are exquisitely vulnerable to general anesthesia and may be important early target of anesthesia-induced developmental neurodegeneration.
Recent data indicate that peripheral T-type Ca2+ channels are instrumental in supporting acute pain transmission. However, the function of these channels in chronic pain processing is less clear. To address this issue, we studied the expression of T-type Ca2+ currents in small nociceptive dorsal root ganglion (DRG) cells from L4-5 spinal ganglia of adult rats with neuropathic pain due to chronic constrictive injury (CCI) of the sciatic nerve. In control rats, whole cell recordings revealed that T-type currents, measured in 10 mM Ba2+ as a charge carrier, were present in moderate density (20 +/- 2 pA/pF). In rats with CCI, T-type current density (30 +/- 3 pA/pF) was significantly increased, but voltage- and time-dependent activation and inactivation kinetics were not significantly different from those in controls. CCI-induced neuropathy did not significantly change the pharmacological sensitivity of T-type current in these cells to nickel. Collectively, our results indicate that CCI-induced neuropathy significantly increases T-type current expression in small DRG neurons. Our finding that T-type currents are upregulated in a CCI model of peripheral neuropathy and earlier pharmacological and molecular studies suggest that T-type channels may be potentially useful therapeutic targets for the treatment of neuropathic pain associated with partial mechanical injury to the sciatic nerve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.