Point-based visualisations of large, multi-dimensional data from molecular biology can reveal meaningful clusters. One of the most popular techniques to construct such visualisations is t-distributed stochastic neighbor embedding (t-SNE), for which a number of extensions have recently been proposed to address issues of scalability and the quality of the resulting visualisations. We introduce openTSNE, a modular Python library that implements the core t-SNE algorithm and its extensions. The library is orders of magnitude faster than existing popular implementations, including those from scikit-learn. Unique to openTSNE is also the mapping of new data to existing embeddings, which can surprisingly assist in solving batch effects.Availability: openTSNE is available at https://github. com/pavlin-policar/openTSNE.
Dimensionality reduction techniques, such as t-SNE, can construct informative visualizations of high-dimensional data. When jointly visualising multiple data sets, a straightforward application of these methods often fails; instead of revealing underlying classes, the resulting visualizations expose dataset-specific clusters. To circumvent these batch effects, we propose an embedding procedure that uses a t-SNE visualization constructed on a reference data set as a scaffold for embedding new data points. Each data instance from a new, unseen, secondary data is embedded independently and does not change the reference embedding. This prevents any interactions between instances in the secondary data and implicitly mitigates batch effects. We demonstrate the utility of this approach by analyzing six recently published single-cell gene expression data sets with up to tens of thousands of cells and thousands of genes. The batch effects in our studies are particularly strong as the data comes from different institutions using different experimental protocols. The visualizations constructed by our proposed approach are clear of batch effects, and the cells from secondary data sets correctly co-cluster with cells of the same type from the primary data. We also show the predictive power of our simple, visual classification approach in t-SNE space matches the accuracy of specialized machine learning techniques that consider the entire compendium of features that profile single cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.