What is the role of social interactions in the creation of price bubbles? Answering this question requires obtaining collective behavioural traces generated by the activity of a large number of actors. Digital currencies offer a unique possibility to measure socio-economic signals from such digital traces. Here, we focus on Bitcoin, the most popular cryptocurrency. Bitcoin has experienced periods of rapid increase in exchange rates (price) followed by sharp decline; we hypothesize that these fluctuations are largely driven by the interplay between different social phenomena. We thus quantify four socio-economic signals about Bitcoin from large datasets: price on online exchanges, volume of word-of-mouth communication in online social media, volume of information search and user base growth. By using vector autoregression, we identify two positive feedback loops that lead to price bubbles in the absence of exogenous stimuli: one driven by word of mouth, and the other by new Bitcoin adopters. We also observe that spikes in information search, presumably linked to external events, precede drastic price declines. Understanding the interplay between the socio-economic signals we measured can lead to applications beyond cryptocurrencies to other phenomena that leave digital footprints, such as online social network usage.
We empirically analyze five online communities: Friendster, Livejournal, Facebook, Orkut, and Myspace, to study how social networks decline. We define social resilience as the ability of a community to withstand changes. We do not argue about the cause of such changes, but concentrate on their impact. Changes may cause users to leave, which may trigger further leaves of others who lost connection to their friends. This may lead to cascades of users leaving. A social network is said to be resilient if the size of such cascades can be limited. To quantify resilience, we use the k-core analysis, to identify subsets of the network in which all users have at least k friends. These connections generate benefits (b) for each user, which have to outweigh the costs (c) of being a member of the network. If this difference is not positive, users leave. After all cascades, the remaining network is the k-core of the original network determined by the cost-to-benefit (c/b) ratio. By analysing the cumulative distribution of k-cores we are able to calculate the number of users remaining in each community. This allows us to infer the impact of the c/b ratio on the resilience of these online communities. We find that the different online communities have different k-core distributions. Consequently, similar changes in the c/b ratio have a different impact on the amount of active users. Further, our resilience analysis shows that the topology of a social network alone cannot explain its success of failure. As a case study, we focus on the evolution of Friendster. We identify time periods when new users entering the network observed an insufficient c/b ratio. This measure can be seen as a precursor of the later collapse of the community. Our analysis can be applied to estimate the impact of changes in the user interface, which may temporarily increase the c/b ratio, thus posing a threat for the community to shrink, or even to collapse.
How do humans respond to indirect social influence when making decisions? We analysed an experiment where subjects had to guess the answer to factual questions, having only aggregated information about the answers of others. While the response of humans to aggregated information is a widely observed phenomenon, it has not been investigated quantitatively, in a controlled setting. We found that the adjustment of individual guesses depends linearly on the distance to the mean of all guesses. This is a remarkable, and yet surprisingly simple regularity. It holds across all questions analysed, even though the correct answers differ by several orders of magnitude. Our finding supports the assumption that individual diversity does not affect the response to indirect social influence. We argue that the nature of the response crucially changes with the level of information aggregation. This insight contributes to the empirical foundation of models for collective decisions under social influence.
The pervasive presence of online media in our society has transferred a significant part of political deliberation to online forums and social networking sites. This article examines popularity, reputation, and social influence on Twitter using large-scale digital traces from 2009 and 2016. We process network information on more than 40 million users, calculating new global measures of reputation that build on the D-core decomposition and the bow-tie structure of the Twitter follower network. We integrate our measurements of popularity, reputation, and social influence to evaluate what keeps users active, what makes them more popular, and what determines their influence. We find that there is a range of values in which the risk of a user becoming inactive grows with popularity and reputation. Popularity in Twitter resembles a proportional growth process that is faster in its strongly connected component, and that can be accelerated by reputation when users are already popular. We find that social influence on Twitter is mainly related to popularity rather than reputation, but that this growth of influence with popularity is sublinear. The explanatory and predictive power of our method shows that global network metrics are better predictors of inactivity and social influence, calling for analyses that go beyond local metrics like the number of followers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.