Sphingosine kinase 1 (SphK1), the enzyme that produces the bioactive sphingolipid metabolite, sphin-gosine-1-phosphate, is a promising new molecular target for therapeutic intervention in cancer and inflammatory diseases. In view of its importance, the main objective of this work was to find new and more potent inhibitors for this enzyme possessing different structural scaffolds than those of the known inhibitors. Our theoretical and experimental study has allowed us to identify two new structural scaffolds (three new compounds), which could be used as starting structures for the design and then the development of new inhibitors of SphK1. Our study was carried out in different steps: virtual screening, synthesis, bioassays and molecular modelling. From our results, we propose a new dihydrobenzo[b] pyrimido[5,4-f]azepine and two alkyl{3-/4-[1-hydroxy-2-(4-arylpiperazin-1-yl)ethyl]phenyl}carbamates as initial structures for the development of new inhibitors. In addition, our molecular modelling study using QTAIM calculations, allowed us to describe in detail the molecular interactions that stabilize the different Ligand-Receptor complexes. Such analyses indicate that the cationic head of the different compounds must be refined in order to obtain an increase in the binding affinity of these ligands.
Niemann–Pick type C (NPC) disease is a lysosomal storage disorder arising from mutations in the cholesterol-trafficking protein NPC1 (95%) or NPC2 (5%). These mutations result in accumulation of low-density lipoprotein-derived cholesterol in late endosomes/lysosomes, disruption of endocytic trafficking, and stalled autophagic flux. Additionally, NPC disease results in sphingolipid accumulation, yet it is unique among the sphingolipidoses because of the absence of mutations in the enzymes responsible for sphingolipid degradation. In this work, we examined the cause for sphingosine and sphingolipid accumulation in multiple cellular models of NPC disease and observed that the activity of sphingosine kinase 1 (SphK1), one of the two isoenzymes that phosphorylate sphingoid bases, was markedly reduced in both NPC1 mutant and NPC1 knockout cells. Conversely, SphK1 inhibition with the isotype-specific inhibitor SK1-I in WT cells induced accumulation of cholesterol and reduced cholesterol esterification. Of note, a novel SphK1 activator (SK1-A) that we have characterized decreased sphingoid base and complex sphingolipid accumulation and ameliorated autophagic defects in both NPC1 mutant and NPC1 knockout cells. Remarkably, in these cells, SK1-A also reduced cholesterol accumulation and increased cholesterol ester formation. Our results indicate that a SphK1 activator rescues aberrant cholesterol and sphingolipid storage and trafficking in NPC1 mutant cells. These observations highlight a previously unknown link between SphK1 activity, NPC1, and cholesterol trafficking and metabolism.
Tertiary amines 3-(dialkylamino)-2-hydroxypropyl 4-[(alkoxycarbonyl)amino]benzoates and their quaternary ammonium salts were synthesized. The final step of synthesis of quaternary ammonium salts was carried out by microwave-assisted synthesis. Software-calculated data provided the background needed to compare fifteen new resulting compounds by their physicochemical properties. The acid dissociation constant (pKa) and lipophilicity index (log P) of tertiary amines were determined; while quaternary ammonium salts were characterized by software-calculated lipophilicity index and surface tension. Biological evaluation aimed at testing acetylcholinesterase and butyrylcholinesterase-inhibiting activity of synthesized compounds. A possible mechanism of action of these compounds was determined by molecular modelling study using combined techniques of docking; molecular dynamics simulations and quantum mechanics calculations.
Abstract:Five new 3-(4-arylpiperazin-1-yl)-2-hydroxypropyl 4-propoxybenzoates were designed and synthesized as potential dual antihypertensive agents. The compounds were prepared as free bases and subsequently transformed to hydrochloride salts. The position of protonation of nitrogen atoms in the piperazine ring of hydrochloride salts was determined by means of 13 C-CP/MAS and 15 N-CP/MAS NMR and IR spectroscopy. Using these solid-state analytical techniques, it was found that both nitrogen atoms were protonated when excess hydrogen chloride was used for preparation of salts. On the other hand, when the equimolar amount of hydrogen chloride was used, piperazine nitrogen substituted by aryl was protonated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.