The toxic equivalency concept used for the risk assessment of polychlorinated biphenyls (PCBs) is based on the aryl hydrocarbon receptor (AhR)-mediated toxicity of coplanar dioxin-like (DL) PCBs. Most PCBs in the environment, however, are non-dioxin-like (NDL) PCBs that cannot adopt a coplanar structure required for AhR activation. For NDL-PCBs, no generally accepted risk concept is available because their toxicity is insufficiently characterized. Here, we systematically determined in vitro toxicity profiles for 24 PCBs regarding 10 different mechanisms of action. Prior to testing, NDL-PCB standards were purified to remove traces of DL compounds. All NDL-PCBs antagonized androgen receptor activation and inhibited gap junctional intercellular communication (GJIC). Lower chlorinated NDL-PCBs were weak estrogen receptor (ER) agonists, whereas higher chlorinated NDL-PCBs were weak ER antagonists. Several NDL-PCBs inhibited estradiol-sulfotransferase activity and bound to transthyretin (TTR) but with much weaker potencies than reported for hydroxylated PCB metabolites. AhR-mediated expression of uridine-glucuronyl transferase isozyme UGT1A6 was induced by DL-PCBs only. Hierarchical cluster analysis of the toxicity profiles yielded three separate clusters of NDL-PCBs and a fourth cluster of reference DL-PCBs. Due to small differences in relative potency among congeners, the highly abundant indicator PCBs 28, 52, 101, 118, 138, 153, and 180 also contributed most to the antiandrogenic, (anti)estrogenic, antithyroidal, tumor-promoting, and neurotoxic potencies calculated for PCB mixtures reported in human samples, whereas the most potent AhR-activating DL-PCB-126 contributed at maximum 0.2% to any of these calculated potencies. PCB-168 is recommended as an additional indicator congener, given its relatively high abundance and antiandrogenic, TTR-binding, and GJIC-inhibiting potencies.
Carbon-based nanomaterials (C-BNM) have recently attracted an increased attention as the materials with potential applications in industry and medicine. Bioresistance and proinflammatory potential of C-BNM is the main obstacle for their medicinal application which was documented in vivo and in vitro. However, there are still limited data especially on graphene derivatives such as graphene platelets (GP). In this work, we compared multi-walled carbon nanotubes (MWCNT) and two different types of pristine GP in their potential to activate inflammasome NLRP3 (The nod-like receptor family pyrin domain containing 3) in vitro. Our study is focused on exposure of THP-1/THP1-null cells and peripheral blood monocytes to C-BNM as representative models of canonical and alternative pathways, respectively. Although all nanomaterials were extensively accumulated in the cytoplasm, increasing doses of all C-BNM did not lead to cell death. We observed direct activation of NLRP3 via destabilization of lysosomes and release of cathepsin B into cytoplasm only in the case of MWCNTs. Direct activation of NLRP3 by both GP was statistically insignificant but could be induced by synergic action with muramyl dipeptide (MDP), as a representative molecule of the family of pathogen-associated molecular patterns (PAMPs). This study demonstrates a possible proinflammatory potential of GP and MWCNT acting through NLRP3 activation.
The aryl hydrocarbon receptor (AhR) contributes to the control of cell-to-cell communication, cell adhesion, migration or proliferation. In the present study, we investigated the regulation of connexin43 (Cx43) and Cx43-mediated gap junctional intercellular communication (GJIC) during the AhR-dependent disruption of contact inhibition in non-tumorigenic liver epithelial cells. The contact inhibition of cell proliferation is a process restricting the cell division of confluent non-transformed cells, which is frequently abolished in cancer cells; however, the mechanisms contributing to its disruption are still only partially understood. Disruption of contact inhibition, which was induced by toxic AhR ligands 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or polycyclic aromatic hydrocarbons in epithelial WB-F344 cells, reduced Cx43 protein levels, possibly via enhanced proteasomal degradation, significantly decreased the amount of gap junction plaques and downregulated GJIC, in an AhR-dependent manner. Although both intracellular and membrane Cx43 pools were markedly reduced in cells released from contact inhibition by TCDD, siRNA-mediated Cx43 knock-down was not sufficient to stimulate proliferation in contact-inhibited cells. Our data suggest that downregulation of Cx43/GJIC in non-transformed epithelial cells is an inherent part of disruption of contact inhibition, which occurs at the post-transcriptional level. This process runs in parallel with alterations of other forms of cell-to-cell communication, thus suggesting that toxic AhR agonists may simultaneously abrogate contact inhibition and reduce GJIC, two essential mechanisms linked to deregulation of cell-to-cell communication during tumor promotion and progression.
One of the toxic effects of non-dioxin-like polychlorinated biphenyls (NDL-PCBs) is the acute inhibition of gap junctional intercellular communication (GJIC), an event possibly associated with tumor promotion. The model NDL-PCB-2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153)-induces a sustained GJIC inhibition in rat liver epithelial WB-F344 cells. As this effect might be related to deregulation of connexin 43 (Cx43) synthesis, trafficking, or degradation, we investigated the impact of PCB 153 on these events. Although PCB 153 had no effect on Cx43 mRNA levels, it induced a gradual loss of Cx43 protein and significantly decreased the amount of gap junction plaques in plasma membrane. PCB 153 contributed to extracellular signal-regulated kinases 1 and 2 (ERK1/2)-dependent accumulation of hyperphosphorylated Cx43-P3 form, thus indicating that ERK1/2 activation by PCB 153 might contribute to its effects on Cx43 internalization or degradation. Inhibition of either proteasomes or lysosomes with their specific inhibitors largely restored total Cx43 protein levels, thus suggesting that both proteasomes and lysosomes may participate in the PCB 153-enhanced Cx43 internalization and degradation. However, neither the proteasomal nor the lysosomal inhibitors restored normal GJIC or number/size of gap junction plaques. Finally, PCB 153 also interfered with restoration of gap junction plaques following the inhibition of Cx43 transport to plasma membrane. Taken together, multiple modes of action seem to contribute to downregulation of Cx43 in PCB 153-treated rat liver epithelial cells. The enhanced degradation of Cx43, together with persistent inhibition of GJIC, might contribute to tumor-promoting effects of NDL-PCBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.