Accurate automatic optimization heuristics are necessary for dealing with the complexity and diversity of modern hardware and software. Machine learning is a proven technique for learning such heuristics, but its success is bound by the quality of the features used. These features must be hand crafted by developers through a combination of expert domain knowledge and trial and error. This makes the quality of the final model directly dependent on the skill and available time of the system architect.Our work introduces a better way for building heuristics. We develop a deep neural network that learns heuristics over raw code, entirely without using code features. The neural network simultaneously constructs appropriate representations of the code and learns how best to optimize, removing the need for manual feature creation. Further, we show that our neural nets can transfer learning from one optimization problem to another, improving the accuracy of new models, without the help of human experts.We compare the effectiveness of our automatically generated heuristics against ones with features hand-picked by experts. We examine two challenging tasks: predicting optimal mapping for heterogeneous parallelism and GPU thread coarsening factors. In 89% of the cases, the quality of our fully automatic heuristics matches or surpasses that of state-of-theart predictive models using hand-crafted features, providing on average 16% and 12% more performance with no human effort expended on designing features.
Predictive modeling using machine learning is an effective method for building compiler heuristics, but there is a shortage of benchmarks. Typical machine learning experiments outside of the compilation field train over thousands or millions of examples. In machine learning for compilers, however, there are typically only a few dozen common benchmarks available. This limits the quality of learned models, as they have very sparse training data for what are often high-dimensional feature spaces. What is needed is a way to generate an unbounded number of training programs that finely cover the feature space. At the same time the generated programs must be similar to the types of programs that human developers actually write, otherwise the learning will target the wrong parts of the feature space. We mine open source repositories for program fragments and apply deep learning techniques to automatically construct models for how humans write programs. We sample these models to generate an unbounded number of runnable training programs. The quality of the programs is such that even human developers struggle to distinguish our generated programs from handwritten code. We use our generator for OpenCL programs, CLgen, to automatically synthesize thousands of programs and show that learning over these improves the performance of a state of the art predictive model by 1.27×. In addition, the fine covering of the feature space automatically exposes weaknesses in the feature design which are invisible with the sparse training examples from existing benchmark suites. Correcting these weaknesses further increases performance by 4.30×.
Random program generation -fuzzing -is an effective technique for discovering bugs in compilers but successful fuzzers require extensive development effort for every language supported by the compiler, and often leave parts of the language space untested.We introduce DeepSmith, a novel machine learning approach to accelerating compiler validation through the inference of generative models for compiler inputs. Our approach infers a learned model of the structure of real world code based on a large corpus of open source code. Then, it uses the model to automatically generate tens of thousands of realistic programs. Finally, we apply established differential testing methodologies on them to expose bugs in compilers. We apply our approach to the OpenCL programming language, automatically exposing bugs with little effort on our side. In 1,000 hours of automated testing of commercial and open source compilers, we discover bugs in all of them, submitting 67 bug reports. Our test cases are on average two orders of magnitude smaller than the state-of-the-art, require 3.03× less time to generate and evaluate, and expose bugs which the state-of-the-art cannot. Our random program generator, comprising only 500 lines of code, took 12 hours to train for OpenCL versus the state-of-the-art taking 9 man months to port from a generator for C and 50,000 lines of code. With 18 lines of code we extended our program generator to a second language, uncovering crashes in Solidity compilers in 12 hours of automated testing. CCS CONCEPTS• Software and its engineering → Software testing and debugging;
Resource-constrained devices for embedded systems are becoming increasingly important. In such systems, memory is highly restrictive, making code size in most cases even more important than performance. Compared to more traditional platforms, memory is a larger part of the cost and code occupies much of it. Despite that, compilers make little effort to reduce code size. One key technique attempts to merge the bodies of similar functions. However, production compilers only apply this optimization to identical functions, while research compilers improve on that by merging the few functions with identical control-flow graphs and signatures. Overall, existing solutions are insufficient and we end up having to either increase cost by adding more memory or remove functionality from programs. We introduce a novel technique that can merge arbitrary functions through sequence alignment, a bioinformatics algorithm for identifying regions of similarity between sequences. We combine this technique with an intelligent exploration mechanism to direct the search towards the most promising function pairs. Our approach is more than 2.4x better than the state-of-the-art, reducing code size by up to 25%, with an overall average of 6%, while introducing an average compilation-time overhead of only 15%. When aided by profiling information, this optimization can be deployed without any significant impact on the performance of the generated code.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.