The review discusses the possibilities of different driving mechanisms and sensors of spherical robots, and a special kind of mobile robots is introduced and discussed. The sensors discussed can expand robots’ sensing capabilities which are typically very limited. Most spherical robots have holonomic characteristics and protect the inner environment using a shell. Today, there are a diversity of driving mechanisms. Therefore, this article provides a review of all of them and identifies their basic properties. Accordingly, many spherical robots have only inner sensors for moving, balancing, driving, etc. However, a few of them are also equipped with sensors that can measure environmental properties. Therefore, in this paper, we propose the possibility of using such sensors as cameras, LiDARs, thermocouples, and gas sensors, which can be used for special purposes underground, for example, in mines, underground tunnels, or road tunnels. After combining all components are combined, it is possible to design a special type of spherical robot designed for underground exploration, such as accidents in mines or road tunnels.
Many modern vehicles today are equipped with an on-board e-call system that can send information about the number of passengers in the event of an accident. However, in case of fire or other major danger in a road tunnel, it is very important for rescue services to know not only the number of passengers in a given vehicle that has an accident and called help via e-call but how many people are in the tunnel in total. This paper deals with the issue of passenger detection and counting using the TPH3008-S Thermal camera and the VIVOTEK IP7361 IP Cameras noninvasively, i.e., the cameras are placed outside the vehicle. These cameras have their limitations; therefore, we investigated how to improve conditions and how to make detection better for future work. The main goal of this article is to summarize the achieved results and possibilities of improvement of the proposed system by adding other sensors and systems that would improve the final score of passenger detection. The experimental results demonstrate that our approach has to be modified and we have to add additional sensors or change methods to achieve more promising results. The results, findings and conclusions might be later used in tunnels and highways and also be applied in telematics and lead to better, safer road transport and improvement of existing tunnel systems sustainability by utilizing resources in a smarter way.
Passenger detection and occupancy estimation are vital tasks in many fields. The existing literature emphasises that the increasing demand for such systems will continue to grow. This paper reviews the existing literature specializing in the field of transportation safety and efficiency concerning occupancy estimation in vehicles and passenger detection at public transport stations. A comparison between different approaches to passenger estimation is presented. Discussion on the advantages and disadvantages is highlighted. Hence, this paper provides an analysis of 146 papers on the current state of the field. This review paper concludes that invasive methods provide high accuracy with relatively cheap implementation, while noninvasive systems do not violate passenger privacy but lack state-of-the-art accuracy. Future work will include a systematic literature review and a comparative analysis of systems considering the existing window tinting and solar windshields heavily blocking certain parts of the electromagnetic spectrum. Moreover, future work will investigate the critical challenges of noninvasive passenger estimation in different types of vehicles: trucks, buses, or even motorcycles.
High hygiene standards were established during the COVID-19 epidemic, and their adherence was closely monitored. They included the need to regularly wash one’s hands and the requirement to cover person’s upper airways or keep at least a two-meter space between individuals. The ITS (Information Technology Systems) community made a big contribution to this by developing methods and applications for the ongoing observation of people and the environment. Our major objective was to create a low-cost, straightforward system for tracking and assessing the danger of spreading COVID-19 in a space.The proposed system collects data from various low-cost environmental sensors such as temperature, humidity, CO2, the number of people, the dynamics of speech, and the cleanliness of the environment with a significant connection to elements of wearable electronics and then evaluate the level of contamination and possible risks and, in the event of a high level of risk, alerts the person to take actions that can reduce or eliminate favourable conditions for the spread of the virus. The system was created at the Laboratory of industrial control systems of the University of Žilina, Slovakia. The experiment demonstrates the ability and feasibility to control the number of people in a space depending on particular symptoms like fever, coughing, and hand hygiene. On the other hand, the laboratory’s temperature, humidity, and air quality should be controlled to reduce the spread of illness.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.