Tool steels are used in stamping, shearing processes, and as cutting tools due to their good mechanical properties. During their working cycle, steels are subject to aggressive conditions such as heat stress, fatigue, and wear. In this paper, three tool steels, namely X153CrMoV12, X37CrMoV5-1, and X45NiCrMo4 were selected against two types of bearing balls, ZrO2 and X46Cr1. All measurements were performed on a UMT TriboLab universal tribometric instrument under dry conditions. The main objective of the experiment was to analyze and compare tool steel wear in contact with two kinds of bearing balls with a diameter of 4.76 mm. This evaluation is focused on the hardness, surface roughness, and microstructure of all samples and on the impact of the input parameters on the resulting wear. All three types of tool steels were measured in the basic annealed state and, subsequently, in the state after hardening and tempering. Experimental results show that tool steels, belonging to high strength steels, can successfully represent wear resistant steels. The content of carbide elements, their size, and shape in the microstructure play an important role in the friction process and subsequent wear. Three types of loads were used and compared in the experiments 30, 60, and 90 N. Increasing the load results in significant degradation of the material on the sample surface. Lastly, the impact of hardness and roughness of materials on wear has also been proven. If abrasive wear occurs in the friction process, there is a greater degree of wear than that of adhesive wear. This is due to less abrasive particles, which behave like a cutting wedge and are subject to subsequent deformation strengthening due to the load increase, which adversely affects the further friction process. Analysis of the results showed that the ZrO2 ceramic ball showed significantly better wear values when compared to the X46Cr13 stainless steel ball. It also improves the values of the coefficient of friction with respect to the type of wear that occurs when the experimental materials and counterparts are in contact.
The present article examines special steels used for the production of injection screws in the plastic industry, with a glass fiber content of up to 30%. Experimental materials, M390 and M398, are classified as tool steels, which are produced by powder metallurgy-HIP methods (hot isostatic pressing). The main goal of the presented paper is to propose the optimal tempered temperature of M398 steel and also to compare the tribological properties of both materials and to determine the degree of their wear depending on their final heat treatment. Partial results refer to the analysis of hardness, roughness, the overall wear mechanism, the change in the volume of retained austenite due to the tempering temperature, and the EDS analysis of the worn surfaces in individual contact pairs. A ceramic ball Al2O3 in the α phase was used as the contact material, which had a diameter of 6.35 mm. The ceramic ball performed a rotational movement on the experimental material surface at an elevated temperature of 200 °C using the dry ball-on-disk method. It was experimentally shown that the new M398 material can fully replace the M390 material because it exhibits significantly better tribological properties. The M398 material showed more than a 400% reduction in wear compared to the M390 material. The ideal heat treatment consisted of cryogenic quenching to −78 °C and a tempering temperature of 400 °C. At tempering temperatures of 200 and 400 °C, adhesive wear occurred, which was combined with abrasive wear at a tempered temperature of 600 °C. The averaged coefficient of friction (COF) results show that the M398 material presents less resistance in the friction process and its values are approximately 0.25, while the M390 material showed a COF value of 0.3 after the cryogenic hardening process. The friction surface roughness of the M398 materials also showed lower values compared to the M390 material by approximately 35%. Both of these results are related to the content of M7C3 and MC carbide particles based on Cr and V in the bulk of the material, which are in favor of the M398 material.
This article deals with the effect of mechanical properties of a rubber compound on tyre wear. For detection purposes, samples of thirteen types of rubber compounds were made, used, and processed in practice. Their hardness was measured with an IRHD (International Rubber Hardness Degree) hardness tester; tensile strength and ductility measurements were carried out at a universal testing facility, Instron 4466. A rapid wear test was conducted on a roller abrasive machine. All measurements were assessed and compared. Selected original results are listed in this article.
This article presents a solution of the fault tree quantitative analysis with application of knowledge of probability distribution type into the failure and distribution parameters in case of non-renewed objects or objects being restored. It brings a look at fault tree solving based on statistical view using mathematical modeling. In this article present relations of FTA analysis for quantitative deterministic approach that is most commonly used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.