Key message An epistatic interaction between SCN resistance loci rhg1-a and rhg2 in PI 90,763 imparts resistance against virulent SCN populations which can be employed to diversify SCN resistance in soybean cultivars. Abstract With more than 95% of the $46.1B soybean market dominated by a single type of genetic resistance, breeding for soybean cyst nematode (SCN)-resistant soybean that can effectively combat the widespread increase in virulent SCN populations presents a significant challenge. Rhg genes (for Resistance to Heterodera glycines) play a key role in resistance to SCN; however, their deployment beyond the use of the rhg1-b allele has been limited. In this study, quantitative trait loci (QTL) were mapped using PI 90,763 through two biparental F3:4 recombinant inbred line (RIL) populations segregating for rhg1-a and rhg1-b alleles against a SCN HG type 1.2.5.7 (Race 2) population. QTL located on chromosome 18 (rhg1-a) and chromosome 11 (rhg2) were determined to confer SCN resistance in PI 90,763. The rhg2 gene was fine-mapped to a 169-Kbp region pinpointing GmSNAP11 as the strongest candidate gene. We demonstrated a unique epistatic interaction between rhg1-a and rhg2 loci that not only confers resistance to multiple virulent SCN populations. Further, we showed that pyramiding rhg2 with the conventional mode of resistance, rhg1-b, is ineffective against these virulent SCN populations. This highlights the importance of pyramiding rhg1-a and rhg2 to maximize the impact of gene pyramiding strategies toward management of SCN populations virulent on rhg1-b sources of resistance. Our results lay the foundation for the next generation of soybean resistance breeding to combat the number one pathogen of soybean.
Soybean cyst nematode (SCN) causes over $1.2 billion in revenue loss annually in the United States and consistently ranks as the most threatening pathogen for soybean. SCN weed hosts have been documented in other states in the eastern Corn Belt, but very little work has been done in the midwestern Corn Belt. To determine alternative SCN weed hosts in South Dakota, 670 whole weed root samples comprising 63 weed species were collected from 48 SCN-positive fields in 13 counties during fall 2016 and spring 2017. Among the 63 weed species, 12 contained SCN juveniles and 7 were confirmed hosts of SCN based on the completion of the SCN life cycle in greenhouse studies. Ranking of female index (FI) for the weed hosts were purple deadnettle (FI = 34.6) > field pennycress (FI = 26.9) > common mallow (FI = 2.04) > shepherd’s purse (FI = 1.89) > white clover (FI = 1.86) > Canada thistle (FI = 1.24) > common cocklebur (FI = 1.10). These results indicate that some weeds can support SCN, and therefore a proactive weed management approach should be employed for fields infested with SCN.
The prospect of incorporating pennycress as an oilseed cover crop in the Midwest's corn-soybean rotation system has drawn researcher and farmer attention. The inclusion of pennycress will be beneficial as it provides an excellent soil cover to reduce soil erosion and nutrient leaching while serving as an additional source for oilseed production and income. However, pennycress is an alternative host for soybean cyst nematode (SCN), which is a major biological threat to soybean that needs to be addressed for sustainable pennycress adoption into our current production systems. To develop a standardized SCN resistance screening strategy in pennycress, we tested and optimized five parameters: (1) germination stimulants, (2) inoculation timing, (3) inoculation rate, (4) experimental incubation time, and (5) susceptible checks. The standardized SCN resistance screening protocol includes: (1) treating pennycress seeds with gibberellic acid for 24 hours, (2) transplanting seedlings 12-15 days after initiating germination and inoculating 10-12 days after transplantation, (3) inoculating at a rate of 1500 eggs/100cc soil (1500 eggs per plant), (4) processing roots at 30 days after inoculation and (5) using susceptible pennycress accession Ames 32869 to calculate the female index. The standardized protocol was used to quantify the response of a diverse set of pennycress accessions for response against SCN HG type 1.2.5.7 and HG type 7. While there were no highly resistant pennycress lines identified, fifteen were rated as moderately resistant to HG type 1.2.5.7, and eight were rated moderately resistant to HG type 7. The resistant lines identified in this study could be utilized to develop SCN-resistant pennycress cultivars. The study also opens a new avenue for research to understand SCN-pennycress interactions through molecular and genomic studies. This knowledge could aid in the successful inclusion of pennycress as a beneficial cover/oilseed crop in the US Midwest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.