The rapid progress in digitalization and automation have led to an accelerated growth in healthcare, generating novel models that are creating new channels for rendering treatment at reduced cost. The Metaverse is an emerging technology in the digital space which has huge potential in healthcare, enabling realistic experiences to the patients as well as the medical practitioners. The Metaverse is a confluence of multiple enabling technologies such as artificial intelligence, virtual reality, augmented reality, internet of medical devices, robotics, quantum computing, etc. through which new directions for providing quality healthcare treatment and services can be explored. The amalgamation of these technologies ensures immersive, intimate and personalized patient care. It also provides adaptive intelligent solutions that eliminates the barriers between healthcare providers and receivers. This article provides a comprehensive review of the Metaverse for healthcare, emphasizing on the state of the art, the enabling technologies to adopt the Metaverse for healthcare, the potential applications, and the related projects. The issues in the adaptation of the Metaverse for healthcare applications are also identified and the plausible solutions are highlighted as part of future research directions.INDEX TERMS Metaverse, healthcare, virtual reality, digital twin, cybersecurity.
Recent advancement in IoT technology has boosted the healthcare domain with enormous usage of IoT devices to provide elevated services to patients with chronic disorders on a real-time basis by the incorporation of IoT sensors on patients’ bodies. However, providing services ensuring security and maintaining the privacy of patients is a challenging task. Blockchain technology promises security in a distributed environment but popular consensus algorithms such as Proof of Work (PoW) and Proof of Stake (PoS) require huge computational resources and energy by making the IoT environment inefficient. This paper introduces a secure Practical Byzantine Fault Tolerance (PBFT) consensus-based lightweight blockchain algorithm for healthcare applications. To strengthen the PBFT consensus, highly trusted nodes were allowed to participate in the consensus algorithm using the Eigen Trust model and Verifiable Random Function (VRF) to select a random primary node from a group of trusted consensus nodes. The proposed algorithm is tested in a simulated environment and evaluated against the traditional PBFT consensus algorithm considering throughput, latency, and fault tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.