Feature selection (FS), an important pre-processing step in the fields of machine learning and data mining, has immense impact on the outcome of the corresponding learning models. Basically, it aims to remove all possible irrelevant as well as redundant features from a feature vector, thereby enhancing the performance of the overall prediction or classification model. Over the years, meta-heuristic optimization techniques have been applied for FS, as these are able to overcome the limitations of traditional optimization approaches. In this work, we introduce a binary variant of the recently-proposed Sailfish Optimizer (SFO), named as Binary Sailfish (BSF) optimizer, to solve FS problems. Sigmoid transfer function is utilized here to map the continuous search space of SFO to a binary one. In order to improve the exploitation ability of the BSF optimizer, we amalgamate another recently proposed meta-heuristic algorithm, namely adaptive β-hill climbing (AβHC) with BSF optimizer. The proposed BSF and AβBSF algorithms are applied on 18 standard UCI datasets and compared with 10 state-of-the-art meta-heuristic FS methods. The results demonstrate the superiority of both BSF and AβBSF algorithms in solving FS problems. The source code of this work is available in https://github.com/Rangerix/MetaheuristicOptimization. INDEX TERMS Binary sailfish optimizer, feature selection, adaptive β-hill climbing, hybrid optimization, UCI dataset.
Feature selection is a process to reduce the dimension of a dataset by removing redundant features, and to use the optimal subset of features for machine learning or data mining algorithms. This helps to minimize the time requirement to train a learning algorithm as well as to lessen the storage requirement by ignoring the less-informative features. Feature selection can be considered as a combinatorial optimization problem. In this paper, the authors have presented a new feature selection algorithm called Mayfly-Harmony Search (MA-HS) based on two meta-heuristics namely Mayfly Algorithm and Harmony Search. Mayfly Algorithm has not hitherto been used for feature selection problems to the best of the author's knowledge. An S-shaped transfer function is incorporated for converting it into a binary version of Mayfly Algorithm. When different candidate solutions obtained from various regions of the search space using Mayfly Algorithm are taken into the harmony memory and processed by Harmony Search, a superior solution can be ensured. This is the primary reason for proposing a hybrid of Mayfly Algorithm and Harmony Search. Thus, combining harmony search with Mayfly Algorithm leads to an increased exploitation of the search space and an overall improvement in the performance of Mayfly-Harmony Search (MA-HS) algorithm. The proposed algorithm has been applied on 18 UCI datasets and compared with 12 other state-of-the-art meta-heuristic FS methods. Experiments have also been performed on three high-dimensional microarray datasets. The results obtained support the superior performance of the algorithm compared to the other methods. The source code of the proposed algorithm can be found using the link as follows: https://github.com/trin07/MA-HS.
Feature selection (FS) is mainly used as a pre-processing tool to reduce dimensionality by eliminating irrelevant or redundant features to be used for a machine learning or data mining algorithm. In this paper, we have introduced binary variant of a recently proposed meta-heuristic algorithm called Social Ski Driver (SSD) optimization. To the best of our knowledge, SSD has not been used yet in the domain of FS. Two binary variants of SSD are proposed using S-shaped and V-shaped transfer functions. Besides, the exploitation ability of SSD is improved by using a local search method, called Late Acceptance Hill Climbing (LAHC). The hybrid meta-heuristic is then converted to binary version by using said transfer functions. The proposed methods are applied on 18 standard UCI datasets and compared with 15 stateof-the-art FS methods. Also to check the robustness of the proposed method, we have applied it to 3 high dimensional microarray datasets and compared with 6 state-of-the-art methods. Achieved results confirm the superiority of the proposed methods compared to other meta-heuristic wrapper based FS methods considered here. Source code of this work is available at https://github.com/consigliere19/SSD-LAHC.INDEX TERMS Social ski driver optimization, feature selection, late acceptance hill climbing, UCI dataset, meta-heuristic optimization, microarray data.
COVID-19 has crippled the world’s healthcare systems, setting back the economy and taking the lives of several people. Although potential vaccines are being tested and supplied around the world, it will take a long time to reach every human being, more so with new variants of the virus emerging, enforcing a lockdown-like situation on parts of the world. Thus, there is a dire need for early and accurate detection of COVID-19 to prevent the spread of the disease, even more. The current gold-standard RT-PCR test is only 71% sensitive and is a laborious test to perform, leading to the incapability of conducting the population-wide screening. To this end, in this paper, we propose an automated COVID-19 detection system that uses CT-scan images of the lungs for classifying the same into COVID and Non-COVID cases. The proposed method applies an ensemble strategy that generates fuzzy ranks of the base classification models using the Gompertz function and fuses the decision scores of the base models adaptively to make the final predictions on the test cases. Three transfer learning-based convolutional neural network models are used, namely VGG-11, Wide ResNet-50-2, and Inception v3, to generate the decision scores to be fused by the proposed ensemble model. The framework has been evaluated on two publicly available chest CT scan datasets achieving state-of-the-art performance, justifying the reliability of the model. The relevant source codes related to the present work is available in: GitHub.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.