Background Hemoparasites, such as Babesia spp., Theileria spp. and Anaplasma spp., can negatively affect the health of farm animals resulting in significant losses in production. These losses inherently affect the economics of the livestock industry. Since increases in the severity of vector-borne diseases in the southeast Asian region have been reported, investigations of parasitic epidemiology in Thailand will be necessary to improve the existing parasite control strategies for blood parasitic infections. This study aims to investigate incidences of bovine hemoparasites throughout central and northern Thailand by focusing on areas of high-density cattle populations. Methods Blood parasitic infections among cattle were screened and identified by microscopic examination. Anemia status was then determined by evaluation of the packed cell volume (PCV) of each animal. Furthermore, blood parasites were detected and identified by genus and species-specific primers through the polymerase chain reaction method. Amplicons were subjected to DNA sequencing; thereafter, phylogenetic trees were constructed to determine the genetic diversity and relationships of the parasite in each area. Results A total of 1,066 blood samples were found to be positive for blood parasitic infections as follows: 13 (1.22%), 389 (36.50%), and 364 (34.15%) for Babesia bovis, Theileria orientalis, and Anaplasma marginale, respectively. Furthermore, multiple hemoparasitic infections in the cattle were detected. The hematocrit results revealed 161 hemoparasitic infected samples from 965 blood samples, all of which exhibiting indications of anemia with no significant differences. Sequence analysis of the identified isolates in this study revealed that B. bovis rap-1, four separate clades of T. orientalis msps, and A. marginale msp4 exhibited considerable sequence similarity to homologous sequences from isolates obtained from other countries. Sequence similarity ranged between 98.57–100%, 83.96–100%, and 97.60–100% for B. bovis rap-1, T. orientalis msps, and A. marginale msp4, respectively. Conclusion In this study, the analyzed incidence data of cattle hemoparasitic infection in Thailand has provided valuable and basic information for the adaptation of blood-borne parasitic infections control strategies. Moreover, the data obtained from this study would be useful for future effective parasitic disease prevention and surveillance among cattle.
Both strong innate and adaptive immune responses are an important component of protection against intraerythrocytic protozoan parasites. Resistance to bovine babesiosis is associated with interferon (IFN)-γ mediated responses. CD4+ T cells and macrophages have been identified as major effector cells mediating the clearance of pathogens. Previously, the apical membrane antigen 1 (AMA-1) was found to significantly induce the immune response inhibiting B. bovis merozoite growth and invasion. However, a detailed characterization of both humoral and cellular immune responses against the structure of B. bovis AMA-1 (BbAMA-1) has not yet been established. Herein, the present study aimed to express the recombinant BbAMA-1 domain I+II protein [rBbAMA-1(I/II)], which is the most predominant immune response region, and to characterize its immune response. As a result, cattle vaccinated with BbAMA-1(I/II) significantly developed high titters of total immunoglobulin (Ig) G antibodies and a high ratio of IgG2/IgG1 when compared to control groups. Interestingly, the BbAMA-1(I/II)-based formulations produced in our study could elicit CD4+ T cells and CD8+ T cells producing IFN-γ and tumor necrosis factor (TNF)-α. Collectively, the results indicate that immunization of cattle with BbAMA-1(I/II) could induce strong Th1 cell responses. In support of this, we observed the up-regulation of Th1 cytokine mRNA transcripts, including IFN-γ, TNF-α, Interleukin (IL)-2 and IL-12, in contrast to down regulation of IL-4, IL-6 and IL-10, which would be indicative of a Th2 cytokine response. Moreover, the up-regulation of inducible nitric oxide synthase (iNOS) was observed. In conclusion, this is the first report on the in-depth immunological characterization of the response to BbAMA-1. According to our results, BbAMA-1 is recognized as a potential candidate vaccine against B. bovis infection. As evidenced by the Th1 cell response, it could potentially provide protective immunity. However, further challenge-exposure with virulent B. bovis strain in immunized cattle would be needed to determine its protective efficacy.
The intracellular bacterium Ehrlichia canis is the causative pathogen of canine monocytic ehrlichiosis (CME) in dogs. Despite its veterinary and medical importance, there is currently no available vaccine against this pathogen. In this study, the recombinant GP19 (rGP19) was produced and used as a recombinant vaccine prototype in a mouse model against experimental E. canis infection. The efficacy of the rGP19 vaccine prototype in the part of stimulating B and T cell responses and conferring protection in mice later challenged with E. canis pathogen were evaluated. The rGP19-specific antibody response was evaluated by ELISA after E. canis challenge exposure (on days 0, 7, and 14 post-challenge), and demonstrated significantly higher mean antibody levels in rGP19-immunized mice compared with adjuvant-immunized and naive mice. Significantly lower ehrlichial loads in blood, liver, and spleen DNA samples were detected in the immunized mice with rGP19 by qPCR. The up-regulation of IFNG and IL1 mRNA expression were observed in mice immunized with rGP19. In addition, this study detected IFN-γ-producing memory CD4+ T cells in the rGP19-immunized mice and later infected with E. canis on day 14 post-infection period using flow cytometry. The present study provided a piece of evidence that rGP19 may eliminate E. canis by manipulating Th1 and B cell roles and demonstrated a promising strategy in vaccine development against E. canis infection in the definitive host for further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.