We study the Landau damping of ferromagnetic magnons in Fe, Co, and Ni as the dimensionality of the system is reduced from three to two. We resort to the ab initio linear response time dependent density functional theory in the adiabatic local spin density approximation. The numerical scheme is based on the Korringa-Kohn-Rostoker Green's function method. The key points of the theoretical approach and the implementation are discussed. We investigate the transition metals in three different forms: bulk phases, free-standing thin films and thin films supported on a nonmagnetic substrate. We demonstrate that the dimensionality trends in Fe and Ni are opposite: in Fe the transition from bulk bcc crystal to Fe/Cu(100) film reduces the damping whereas in Ni/Cu(100) film the attenuation increases compared to bulk fcc Ni. In Co, the strength of the damping depends relatively weakly on the sample dimensionality. We explain the difference in the trends on the basis of the underlying electronic structure. The influence of the substrate on the spin-wave damping is analyzed by employing Landau maps representing wave-vector resolved spectral density of the Stoner excitations.
We report on a combined experimental and theoretical study of the spin-dependent relaxation processes in the electron system of an iron film on Cu(100). Spin-, time-, energy- and angle-resolved two-photon photoemission shows a strong characteristic dependence of the lifetime of photoexcited electrons on their spin and energy. Ab initio calculations as well as a many-body treatment corroborate that the observed properties are determined by relaxation processes involving magnon emission. Thereby we demonstrate that magnon emission by hot electrons occurs on the femtosecond time scale and thus provides a significant source of ultrafast spin-flip processes. Furthermore, engineering of the magnon spectrum paves the way for tuning the dynamic properties of magnetic materials.
The energies and lifetimes of magnons in several Mn-based Heusler alloys are studied using linear response density functional theory. The number of the spin wave branches in Co(2)MnSi corresponds to the number of its magnetic sublattices in contrast with the NiMnSb case in which the induced Ni sublattice cannot support optical magnons. The half-metallicity of these systems results in long-living acoustic spin waves. The example of non-half-metallic Cu(2)MnAl shows that the hybridization with Stoner continuum leads not only to the damping of magnons but also to a renormalization of their energies.
We study spin excitation spectra of one-, two-, and three-dimensional magnets featuring nonmagnetic defects at a wide range of concentrations. Taking the Heisenberg model as the starting point, we tackle the problem by both direct numerical simulations in large supercells and using a semianalytic coherent-potential approximation. We consider the properties of the excitations in both direct and reciprocal spaces. In the limits of the concentration c of the magnetic atoms tending to 0 or 1 the properties of the spin excitations are similar in all three dimensions. In the case of a low concentration of magnetic atoms the spin excitation spectra are dominated by the modes confined in the real space to single atoms or small clusters and delocalized in the reciprocal space. In the limit of c tending to 1, we obtain the spin-wave excitations delocalized in the real space and localized in the reciprocal space. However, for the intermediate concentrations the properties of the spin excitations are strongly dimensionality dependent. We pay particular attention to the formation, with increase of c, of the Lorentzian-shaped peaks in the spectral densities of the spin excitations, which can be regarded as magnon states with a finite lifetime given by the width of the peaks. In general, low-dimensional magnets are more strongly affected by the presence of nonmagnetic impurities than their bulk counterparts. The details of the electronic structure, varying with the dimensionality and the concentration, substantially influence the spin excitation spectra of real materials, as we show in the example of the FeAl alloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.