The functioning of the human eye in the extreme range of light intensity requires a combination of the high sensitivity of photoreceptors with their photostability. Here, we identify a regulatory mechanism based on dynamic modulation of light absorption by xanthophylls in the retina, realized by reorientation of pigment molecules induced by trans – cis photoisomerization. We explore this photochemically switchable system using chromatographic analysis coupled with microimaging based on fluorescence lifetime and Raman scattering, showing it at work in both isolated human retina and model lipid membranes. The molecular mechanism underlying xanthophyll reorientation is explained in terms of hydrophobic mismatch using molecular dynamics simulations. Overall, we show that xanthophylls in the human retina act as “molecular blinds”, opening and closing on a submillisecond timescale to dynamically control the intensity of light reaching the photoreceptors, thus enabling vision at a very low light intensity and protecting the retina from photodegradation when suddenly exposed to strong light.
F o subcomplex of ATP synthase is a membrane-embedded rotary motor that converts proton motive force into mechanical energy. Despite a rapid increase in the number of high-resolution structures, the mechanism of tight coupling between proton transport and motion of the rotary c-ring remains elusive. Here, using extensive all-atom free energy simulations, we show how the motor’s directionality naturally arises from the interplay between intraprotein interactions and energetics of protonation of the c-ring. Notably, our calculations reveal that the strictly conserved arginine in the a-subunit (R176) serves as a jack-of-all-trades: it dictates the direction of rotation, controls the protonation state of the proton-release site, and separates the two proton-access half-channels. Therefore, arginine is necessary to avoid slippage between the proton flux and the mechanical output and guarantees highly efficient energy conversion. We also provide mechanistic explanations for the reported defective mutations of R176, reconciling the structural information on the F o motor with previous functional and single-molecule data.
Amphotericin B (AmB), one of the most powerful but also toxic drugs used to treat systemic mycoses, is believed to selectively permeabilize fungal cell membranes to ions in a sterol-dependent manner.
Fo subcomplex of ATP synthase is an membrane-embedded rotary motor that converts proton motive force into mechanical energy. Despite a rapid increase in the number of high-resolution structures, the mechanism of tight coupling between proton transport and motion of the rotary c-ring remains elusive. Here, using extensive all-atom free energy simulations, we show how the motor's directionality naturally arises from the interplay between intra-protein interactions and energetics of protonation of the c-ring. Notably, our calculations reveal that the strictly conserved arginine in the a-subunit (R176) serves as a jack-of-all-trades: it dictates the direction of rotation, controls the protonation state of the proton-release site and separates the two proton-access half-channels. Therefore, arginine is necessary to avoid slippage between the proton flux and the mechanical output and guarantees highly efficient energy conversion. We also provide mechanistic explanations for the reported defective mutations of R176, reconciling the structural information on the Fo motor with previous functional and single-molecule data.
Abstract$$\gamma$$ γ -Secretase is an enzyme known to cleave multiple substrates within their transmembrane domains, with the amyloid precursor protein of Alzheimer’s Disease among the most prominent examples. The activity of $$\gamma$$ γ -secretase strictly depends on the membrane cholesterol content, yet the mechanistic role of cholesterol in the substrate binding and cleavage remains unclear. In this work, we used all-atom molecular dynamics simulations to examine the role of cholesterol in the initial binding of a direct precursor of $$\beta$$ β -amyloid polypeptides by $$\gamma$$ γ -secretase. We showed that in cholesterol-rich membranes, both the substrate and the enzyme region proximal to the active site induce a local membrane thinning. With the free energy methods we found that in the presence of cholesterol the substrate binds favorably to the identified exosite, while cholesterol depletion completely abolishes the binding. To explain these findings, we directly examined the role of hydrophobic mismatch in the substrate binding to $$\gamma$$ γ -secretase, showing that increased membrane thickness results in higher propensity of the enzyme to bind substrates. Therefore, we propose that cholesterol promotes substrate binding to $$\gamma$$ γ -secretase by increasing the membrane thickness, which leads to the negative hydrophobic mismatch between the membrane and binding partners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.