Multidimensional control systems have been the subject of much productive research over more than three decades. In contrast to standard control systems, there has been much less reported on applications where the multidimensional setting is the only possible setting for design or produces implementations that perform to at least the same level. This paper addresses the latter area where case studies focusing on control law design and evaluation, including experimental results in one case, are reported. These demonstrate that movement towards the actual deployment of multidimensional control systems is increasing.
This paper considers two-dimensional (2D) discrete linear systems recursive over the upper right quadrant described by well known state-space models. Included are discrete linear repetitive processes that evolve over subset of this quadrant. A stability theory exists for these processes based on a bounded-input bounded-output approach and there has also been work on the design of stabilizing control laws, elements of which have led to the assertion that this stability theory is too strong in many cases of applications interest. This paper develops so-called strong practical stability as an alternative in such cases. The analysis includes computationally efficient tests that lead directly to the design of stabilizing control laws, including the case when there is uncertainty associated with the process model. The results are illustrated by application to a linear model approximation of the dynamics of a metal rolling process.
Abstract-This brief develops a new algorithm for the design of iterative learning control law algorithms in a 2-D systems setting. This algorithm enables control law design for error convergence and performance, and is actuated by process output information only. Results are also given from the experimental application to a gantry robot.Index Terms-2-D systems design, iterative learning control, repetitive processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.