Stearoyl-CoA desaturase (SCD) catalyzes the rate-limiting step in the biosynthesis of monounsaturated fatty acids. Mice with a targeted disruption of the SCD1 isoform have reduced body adiposity, increased energy expenditure, and up-regulated expression of several genes encoding enzymes of fatty acid -oxidation in liver. The mechanisms by which SCD deficiency leads to these metabolic changes are presently unknown. Here we show that the phosphorylation and activity of AMP-activated protein kinase (AMPK), a metabolic sensor that regulates lipid metabolism during increased energy expenditure is significantly increased (Ϸ40%, P < 0.01) in liver of SCD1 knockout mice (SCD1؊͞؊). In parallel with the activation of AMPK, the phosphorylation of acetyl-CoA carboxylase at Ser-79 was increased and enzymatic activity was decreased (Ϸ35%, P < 0.001), resulting in decreased intracellular levels of malonyl-CoA (Ϸ47%, P < 0.001). An SCD1 mutation also increased AMPK phosphorylation and activity and increased acetyl-CoA carboxylase phosphorylation in leptin-deficient ob͞ob mice. Lower malonyl-CoA concentrations are known to derepress carnitine palmitoyltransferase 1 (CPT1). In SCD1؊͞؊ mice, CPT1 and CPT2 activities were significantly increased (in both cases Ϸ60%, P < 0.001) thereby stimulating the oxidation of mitochondrial palmitoyl-CoA. Our results identify AMPK as a mediator of increased fatty acid oxidation in liver of SCD1-deficient mice.
Aging has been linked to several degenerative processes that, through the accumulation of molecular and cellular damage, can progressively lead to cell dysfunction and organ failure. Human aging is linked with a higher risk for individuals to develop cancer, neurodegenerative, cardiovascular, and metabolic disorders. The understanding of the molecular basis of aging and associated diseases has been one major challenge of scientific research over the last decades. Mitochondria, the center of oxidative metabolism and principal site of reactive oxygen species (ROS) production, are crucial both in health and in pathogenesis of many diseases. Redox signaling is important for the modulation of cell functions and several studies indicate a dual role for ROS in cell physiology. In fact, high concentrations of ROS are pathogenic and can cause severe damage to cell and organelle membranes, DNA, and proteins. On the other hand, moderate amounts of ROS are essential for the maintenance of several biological processes, including gene expression. In this review, we provide an update regarding the key roles of ROS-mitochondria cross talk in different fundamental physiological or pathological situations accompanying aging and highlighting that mitochondrial ROS may be a decisive target in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.