X-ray crystal structures of the spermine(4+) form of the Z-DNA duplex with the self-complementary d(CG)3 sequence in complexes with Mn(2+) and Zn(2+) cations have been determined at the ultrahigh resolutions of 0.75 and 0.85 Å, respectively. Stereochemical restraints were only used for the sperminium cation (in both structures) and for nucleotides with dual conformation in the Zn(2+) complex. The Mn(2+) and Zn(2+) cations at the major site, designated M(2+)(1), bind at the N7 position of G6 by direct coordination. The coordination geometry of this site was octahedral, with complete hydration shells. An additional Zn(2+)(2) cation was bis-coordinated in a tetrahedral fashion by the N7 atoms of G10 and G12 from a symmetry-related molecule. The coordination distances of Zn(2+)(1) and Zn(2+)(2) to the O6 atom of the guanine residues were 3.613 (6) and 3.258 (5) Å, respectively. Moreover, a chloride ion was also identified in the coordination sphere of Zn(2+)(2). Alternate conformations were observed in the Z-DNA-Zn(2+) structure not only at internucleotide linkages but also at the terminal C3'-OH group of G12. The conformation of the sperminium chain in the Z-DNA-Mn(2+) complex is similar to the spermine(4+) conformation in analogous Z-DNA-Mg(2+) structures. In the Z-DNA-Zn(2+) complex the sperminium cation is disordered and partially invisible in electron-density maps. In the Z-DNA-Zn(2+) complex the sperminium cation only interacts with the phosphate groups of the Z-DNA molecules, while in the Z-DNA-Mn(2+) structure it forms hydrogen bonds to both the phosphate groups and DNA bases.
This work is part of our project aimed at characterizing metal-binding properties of left-handed Z-DNA helices. The three Cr3+ cations found in the asymmetric unit of the d(CGCGCG)2–Cr3+ crystal structure do not form direct coordination bonds with atoms of the Z-DNA molecule. Instead, the hydrated Cr3+ ions are engaged in outer-sphere interactions with phosphate groups and O6 and N7 guanine atoms of the DNA. The Cr3+(1) and Cr3+(2) ions have disordered coordination spheres occupied by six water molecules each. These partial-occupancy chromium cations are 2.354(15) Å apart and are bridged by three water molecules from their hydration spheres. The Cr3+(3) cation has distorted square pyramidal geometry. In addition to the high degree of disorder of the DNA backbone, alternate conformations are also observed for the deoxyribose and base moieties of the G2 nucleotide. Our work illuminates the question of conformational flexibility of Z-DNA and its interaction mode with transition-metal cations.Electronic supplementary materialThe online version of this article (doi:10.1007/s00775-015-1247-5) contains supplementary material, which is available to authorized users.
The self-complementary d(CGCGCG) hexanucleotide was synthesized with both D-2'-deoxyribose (the natural enantiomer) and L-2'-deoxyribose, and the two enantiomers were mixed in racemic (1:1) proportions and crystallized, producing a new crystal form with C2/c symmetry that diffracted X-rays to 0.78 Å resolution. The structure was solved by direct, dual-space and molecular-replacement methods and was refined to an R factor of 13.86%. The asymmetric unit of the crystal contains one Z-DNA duplex and three Mg sites. The crystal structure is comprised of both left-handed (D-form) and right-handed (L-form) Z-DNA duplexes and shows an unexpectedly high degree of structural disorder, which is manifested by the presence of alternate conformations along the DNA backbone chains as well as at four nucleobases (including one base pair) modelled in double conformations. The crystal packing of the presented D/L-DNA-Mg structure exhibits novel DNA hydration patterns and an unusual arrangement of the DNA helices in the unit cell. The paper describes the structure in detail, concentrating on the mode of disorder, and compares the crystal packing of the racemic d(CGCGCG) duplex with those of other homochiral and heterochiral Z-DNA structures.
The self-complementary dCrGdCrGdCrG hexanucleotide, in which not only the pyrimidine/purine bases but also the ribo/deoxy sugars alternate along the sequence, was crystallized in the presence of barium cations in the form of a left-handed Z-type duplex. The asymmetric unit of the P21 crystal with a pseudohexagonal lattice contains four chimeric duplexes and 16 partial Ba(2+) sites. The chimeric (DNA-RNA)2 duplexes have novel patterns of hydration and exhibit a high degree of discrete conformational disorder of their sugar-phosphate backbones, which can at least partly be correlated with the fractional occupancies of the barium ions. The crystals of the DNA-RNA chimeric duplex in complex with Ba(2+) ions and also with Sr(2+) ions exhibit complicated twinning, which in combination with structural pseudosymmetry made structure determination difficult. The structure could be successfully solved by molecular replacement in space groups P1 and P21 but not in orthorhombic or higher symmetry and, after scrupulous twinning and packing analysis, was refined in space group P21 to an R and Rfree of 11.36 and 16.91%, respectively, using data extending to 1.09 Å resolution. With the crystal structure having monoclinic symmetry, the sixfold crystal twinning is a combination of threefold and twofold rotations. The paper describes the practical aspects of dealing with cases of complicated twinning and pseudosymmetry, and compares the available software tools for the refinement and analysis of such cases.
The crystal structure of an RNA/DNA hybrid dodecamer, r(5'-uaaaagaaaagg):d(5'-CCTTTTCTTTTA), which contains three-quarters of the polypurine tract (PPT) sequence of the HIV RNA genome is reported. The hybrid structure was determined at 1.6 Å resolution and was found to have the A-form conformation. However, the presence of alternate conformations along the RNA template strand indicated increased flexibility of the PPT sequence. Two segments (at nucleotides 1-2 and 6-8) of the RNA chain have two conformations exhibiting differences in torsion and pseudorotation angles. For conformation I((1-2), (6-8)), 25% of the RNA sugars have the C2'-exo pucker and the rest have the expected C3'-endo pucker. The II(1-2) and II(6-8) conformations of the RNA strand have one sugar with the C2'-exo pucker. None of the ribose rings exist in the C2'-endo form, in contrast to a previous report which postulated a C2'-endo ribose as a key structural element of the PPT. The widths of the minor groove for conformations I((1-2), (6-8)) and II((1-2), (6-8)) of the RNA strand are 9.2-10.5 and 9.4-10.7 Å, respectively. Both ranges are very close to the intervals accepted for A-form RNA duplexes. On the opposing DNA primer strand most of the sugars are C3'-endo, except for the 3'-terminal sugars, which are C2'-endo (T22) or O4'-endo (T23 and A24). The duplex includes a noncanonical u1(anti)·A24(syn) base interaction with only one hydrogen bond between the bases. This noncanonical base interaction at the 5'-end of the template distorts the values of the helical parameters of the adjacent base pair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.