The effectiveness of the treatment of breast cancer depends on its timely detection. An early step in the diagnosis is the cytological examination of breast material obtained directly from the tumor. This work reports on advances in computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies to characterize these biopsies as either benign or malignant. Instead of relying on the accurate segmentation of cell nuclei, the nuclei are estimated by circles using the circular Hough transform. The resulting circles are then filtered to keep only high-quality estimations for further analysis by a support vector machine which classifies detected circles as correct or incorrect on the basis of texture features and the percentage of nuclei pixels according to a nuclei mask obtained using Otsu's thresholding method. A set of 25 features of the nuclei is used in the classification of the biopsies by four different classifiers. The complete diagnostic procedure was tested on 737 microscopic images of fine needle biopsies obtained from patients and achieved 98.51% effectiveness. The results presented in this paper demonstrate that a computerized medical diagnosis system based on our method would be effective, providing valuable, accurate diagnostic information.
By growing the capacity and processing power of the handheld devices nowadays, a wide range of capabilities can be implemented in these devices to make them more intelligent and user friendly. Determining the mood of the user can be used in order to provide suitable reactions from the device in different conditions. One of the most studied ways of mood detection is by using facial expressions, which is still one of the challenging fields in pattern recognition and machine learning science.Deep Neural Networks (DNN) have been widely used in order to overcome the difficulties in facial expression classification. In this paper it is shown that the classification accuracy is significantly lower when the network is trained with one database and tested with a different database. A solution for obtaining a general and robust network is given as well.
Breast cancer is the most common cancer among women. The effectiveness of treatment depends on early detection of the disease. Computer-aided diagnosis plays an increasingly important role in this field. Particularly, digital pathology has recently become of interest to a growing number of scientists. This work reports on advances in computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies. The task at hand is to classify those as either benign or malignant. We propose a robust segmentation procedure giving satisfactory nuclei separation even when they are densely clustered in the image. Firstly, we determine centers of the nuclei using conditional erosion. The erosion is performed on a binary mask obtained with the use of adaptive thresholding in grayscale and clustering in a color space. Then, we use the multi-label fast marching algorithm initialized with the centers to obtain the final segmentation. A set of 84 features extracted from the nuclei is used in the classification by three different classifiers. The approach was tested on 450 microscopic images of fine needle biopsies obtained from patients of the Regional Hospital in Zielona Góra, Poland. The classification accuracy presented in this paper reaches 100%, which shows that a medical decision support system based on our method would provide accurate diagnostic information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.