The main aim of this study is to estimate the kinetic and thermodynamic parameters of thermal decomposition of starches by the Coats–Redfern method. This procedure is a commonly used thermogravimetric analysis/difference thermal gravimetry/differental thermal analysis (TG/DTG-DTA) kinetic method for single rate form. The study also shows a proposed method for reactive hydroxyl groups content on the starch surface determination, and values were in range of 960.21–1078.76 mg OH per 1 g of starch. Thermal processing revealed the thermophysical properties of biomass for the kinetics of decomposition estimation. Activation energies reached the values in range of approximately 66.5–167 kJ·mol−1. This research also enables the determination of the temperature conditions required for becoming the desired form of material. Therefore, it is necessary to achieve the requested compact porous structure in an activation process, because in the native state, the polymer exhibits limited applications as a result of thermal decomposition, low shear stress, retrogradation, and syneresis, hence the low solubility in organic solvents. Thermodynamic parameters and reactive hydroxyl groups in this article review are innovative and have not yet been found in the literature.
The paper focuses on the determination of fuel consumption (CO 2 emission) and exhaust emissions such as CO, HC, NO x , and PM in the process of timber extraction and transport. A complex assessment of fuel consumption and exhaust emissions was performed for the entire, fully mechanized supply chain including, tree felling, delimbing, and bucking with a harvester, timber extraction with a forwarder and transport with a truck. The performed investigations determined unit exhaust emissions (referred to 1 m 3 of timber) for the entire technological process and its individual stages. The investigations of the exhaust emissions and fuel consumption were performed under actual conditions of typical forest operations and transport. State-of-the-art portable emissions measurement system equipment was used for the measurements. The fuel consumption was determined through the carbon balance method. The investigations were performed for the process of extraction and transport of pulpwood. The measurements were performed on location in the town of Bębnikąt near Poznań, in a pinewood forest, typical of this part of Europe. The analysis includes the transport of timber to the lumberyard on a distance of 31.4 km. The total fuel consumption for the entire mechanized supply chain was 2.10 dm 3 /m 3 . The total exhaust emissions, however, amounted to: CO-8.91 g/m 3 , HC-1.19 g/m 3 , NO x -45.32 g/m 3 , PM-4.04 g/m 3 .
The aspect of safety in electronic devices has turned out to be a huge challenge for the world of science. Thus far, satisfactory power and energy densities, efficiency, and cell capacities have been achieved. Unfortunately, the explosiveness and thermal runaway of the cells prevents them from being used in demanding applications such as electric cars at higher temperatures. The main aim of this review is to highlight different electrolytes used in lithium-ion cells as well as the flammability aspect. In the paper, the authors present liquid inorganic electrolytes, composite polymer–ceramic electrolytes, ionic liquids (IL), polymeric ionic liquids, polymer electrolytes (solvent-free polymer electrolytes (SPEs), gel polymer electrolytes (GPEs), and composite polymer electrolytes (CPEs)), and different flame retardants used to prevent the thermal runaway and combustion of lithium-ion batteries (LIBs). Additionally, various flame tests used for electrolytes in LIBs have been adopted. Aside from a detailed description of the electrolytes consumed in LIBs. Last section in this work discusses hydrogen as a source of fuel cell operation and its practical application as a global trend that supports green chemistry.
Purpose Among the many publications on the environmental life cycle assessment (LCA) of transport, there are only a few examples of works dedicated to means of internal transport. For this reason, it was decided to gather energy-oriented inventory data and to assess the environmental impact related to the operation of selected forklift trucks, as the most commonly used means of internal transport. This paper presents the main assumptions and the results in relation to the four phases of LCA: the goal and scope definition, the life cycle inventory, the life cycle impact assessment results, and the interpretation. Methods Ten forklifts with different engines were selected in order to carry out the life cycle assessment study. The research was based on the results of measuring the operating fuel consumption and exhaust gas emissions, conducted using the SEMTECH-DS mobile device from the PEMS group of devices. In order to make the measurements under a circumstance close to the real conditions of forklift exploitation, it was decided to slightly modify the operating cycle proposed in VDI 2198. The environmental impact of the fuel/electricity usage and exhaust gas emissions was assessed using the ISO 14040x guidelines and the IMPACT 2002+ method. Results and discussion The study showed that using an electric forklift to transport 1 t of payload over a distance of 1 km has a significantly smaller environmental impact than using one of the selected forklifts powered by an internal combustion engine. Using forklifts powered by liquefied petroleum gas (LPG) engines leads to a significantly higher environmental impact whilst the use of vehicles with diesel engines has an impact at a level several times lower. In a case of drives without load, where functional unit was defined as covering 1-km distance with no vehicle load, a lower impact for the electric vehicles was also obtained. The analysis includes the influences of the upstream processes of fuel and electrical energy production. Conclusions Even when Poland's production scenario (based almost entirely on fossil fuels) is taken into consideration, the electric forklifts still show a clear advantage. It should be expected that, if the technological mix of electrical energy production for countries with a higher share of renewable or nuclear energy were to be taken into account, the environmental indicators for electric vehicles would be even lower. It is worth noting that only the energy aspects of forklift operation were analysed. Further studies aiming to collect inventory data relating to other exploitation aspects, as well as the production and utilization of the same vehicles, are planned as a continuation of this research.
Abstract. The paper presents the results of investigations on the exhaust emissions carried out under real operating conditions of gasoline engines operating in a power generator and a chainsaw. During the operation of these devices the authors measured the following exhaust emissions: CO, HC, NO x and CO 2 . For the measurements the authors used a portable exhaust emission analyzer SEMTECH DS by SENSORS. This analyzer measures the concentrations of the exhaust gas components in an on-line mode while the engine is running under real operating conditions (road, field etc.). The exhaust emissions tests of non-road engine applications are performed on engine test beds in the NRSC (ISO 8178) and NRTC tests. The presented method is a new solution in determining of the exhaust emissions from such engines. The obtained results were compared with the applicable emission requirements. Besides, based on the performed investigations, the authors attempted an evaluation of the possibilities of the use of the measurement method for development works related to the reduction of the emission from small gasoline engines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.