Border-zone (BZ) tissue, representing viable yet remodelled myocardium surrounding infarct scars, has been strongly correlated with arrhythmogenic risk postmyocardial infarction. How the electrophysiological remodelling in BZ tissue facilitates arrhythmogenesis, particularly of a focal origin, is currently unknown. In this study, we used computational models of human ventricular tissue to quantify spatial changes in action potential duration (APD) and effective refractory period (ERP) in the presence of electrophysiological BZ remodelling. Reductions in sodium channel conductivity to 35% increased ERP by > 30 ms relative to healthy tissue in absence of significant changes in APD due to a decrease in tissue excitability. When combined with remodelling of repolarising potassium currents, larger changes in ERP of > 60 ms occurred, due to concurrent increases in APD. Spatial plots of ERP along interfaces between healthy and BZ regions showed high spatial ERP gradients. Such heterogeneity may facilitate unidirectional block of nearby focal ectopic beats, providing an important focal arrhythmogenenic substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.