This work is a review of the Poisson–Boltzmann (PB) continuum electrostatics theory and its modifications, with a focus on salt effects and counterion binding. The PB model is one of the mesoscopic theories that describes the electrostatic potential and equilibrium distribution of mobile ions around molecules in solution. It serves as a tool to characterize electrostatic properties of molecules, counterion association, electrostatic contributions to solvation, and molecular binding free energies. We focus on general formulations which can be applied to large molecules of arbitrary shape in all‐atomic representation, including highly charged biomolecules such as nucleic acids. These molecules present a challenge for theoretical description, because the conventional PB model may become insufficient in those cases. We discuss the conventional PB equation, the corresponding functionals of the electrostatic free energy, including a connection to DFT, simple empirical extensions to this model accounting for finite size of ions, the modified PB theory including ionic correlations and fluctuations, the cell model, and supplementary methods allowing to incorporate site‐bound ions in the PB calculations. © 2007 Wiley Periodicals, Inc. Biopolymers 89: 93–113, 2008.This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com
The Lagrange formalism was implemented to derive the equations of motion for the physics-based united-residue (UNRES) force field developed in our laboratory. The C α… C α and C α… SC (SC denoting a side-chain center) virtual-bond vectors were chosen as variables. The velocity Verlet algorithm was adopted to integrate the equations of motion. Tests on the unblocked Ala 10 polypeptide showed that the algorithm is stable in short periods of time up to the time step of 1.467 fs; however, even with the shorter time step of 0.489 fs, some drift of the total energy occurs because of momentary jumps of the acceleration. These jumps are caused by numerical instability of the forces arising from the U rot component of UNRES that describes the energetics of side-chain-rotameric states. Test runs on the Gly 10 sequence (in which U rot is not present) and on the Ala 10 sequence with U rot replaced by a simple numerically stable harmonic potential confirmed this observation; oscillations of the total energy were observed only up to the time step of 7.335 fs, and some drift in the total energy or instability of the trajectories started to appear in long-time (2 ns and longer) trajectories only for the time step of 9.78 fs. These results demonstrate that the present U rot components (which are statistical potentials derived from the Protein Data Bank) must be replaced with more numerically stable functions; this work is under way in our laboratory. For the purpose of our present work, a nonsymplectic variable-time-step algorithm was introduced to reduce the energy drift for regular polypeptide sequences. The algorithm scales down the time step at a given point of a trajectory if the maximum change of acceleration exceeds a selected cutoff value. With this algorithm, the total energy is reasonably conserved up to a time step of 2.445 fs, as tested on the unblocked Ala 10 polypeptide. We also tried a symplectic multiple-time-step reversible RESPA algorithm and achieved satisfactory energy conservation for time steps up to 7.335 fs. However, at present, it appears that the reversible RESPA algorithm is several times more expensive than the variable-time-step algorithm because of the necessity to perform additional matrix multiplications. We also observed that, because Ala 10 folds and unfolds within picoseconds in the microcanonical mode, this suggests that the effective (event-based) time unit in UNRES dynamics is much larger than that of all-atom dynamics because of averaging over the fast-moving degrees of freedom in deriving the UNRES potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.