Bisphenol A (BPA) is a widely used chemical, that can potentially be toxic to plants. In this study we examined the toxicity of 5-50 mg/l of BPA on Arabidopsis thaliana. Additionally, the effects of 0.5-5 mg/l of BPA were examined after four weeks of development. BPA had no effect on the germination rate and the chlorophyll a/b ratio. The chlorophyll a and carotenoid content was significantly elevated in seedlings treated with 5 mg/l of BPA. In 4-week-old plants there was no change in the chlorophyll and carotenoid content and photosynthetic parameters (F/F, F/F and PI) were unaffected, which suggests no photoinhibition. No oxidative stress symptoms were observed. BPA significantly decreased leaf protein content. A low concentration of BPA seems to have no significant effect on A. thaliana flowering, but further investigation is needed. The results obtained indicate that a low concentration of BPA has no negative effect on the growth and development of A. thaliana.
Light exposure is an important environmental factor which breaks seed dormancy in many plant species. Phytochromes have been identified as playing a crucial role in perception of the light signal that releases seed germination in Arabidopsis. Phototropins (Phot1, Phot2) are blue/UV-photoreceptors in plants which mediate phototropic responses, chloroplast relocation, hypocotyl growth inhibition and stomata opening. We studied germination under different light conditions in Arabidopsis Phot1-null and Phot2-null mutants and in a double phot1phot2 mutant. Germination of single phot1 and phot2 mutants in darkness was much lower than in wildtype (WT) seeds, whereas double phot1phot2 mutant lacking both functional phototropins germinated at frequency comparable to WT seeds, irrespective of light and temperature conditions. Light treatment of imbibed seeds was essential for effective germination of phot1, irrespective of low-temperature conditioning. In contrast, cold stratification promoted dark germination of phot2 seeds after imbibition in dim light. Low germination frequency of phot1 seeds under low light intensity suggests that the presence of functional Phot1 might be crucial for effective germination at these conditions. The lower germination frequency of phot2 seeds under continuous light suggests that Phot2 might be responsible for stimulating germination of seeds exposed to direct daylight. Thus, the phototropin system may cooperate with phytochromes regulating the germination competence of seeds under different environmental conditions. K Ke ey y w wo or rd ds s: : Photomorphogenesis, seed germination, phototropins, light signalling, Arabidopsis thaliana.
Although etiolated Arabidopsis thaliana seedlings are widely used as a model to study the de-etiolation process, the etiolation itself at the molecular level still needs elucidation. Here, we monitored the etiolation dynamics for wild type A. thaliana seedlings and lutein-deficient (lut2) mutant between 2 and 12 days of their growth in the absence of light. We analyzed the shape of the apex, the growth rate, the carotenoids and protochlorophyllide (Pchlide) accumulation, and the light-dependent protochlorophyllide oxidoreductase (LPOR) transcripts. Differences concerning the apical hook curvature and cotyledon opening among seedlings of the same age were observed, mostly after day 6 of the culture. We categorized the observed apex shapes and presented quantitatively how distribution among the categories changed during 12 days of seedling growth. The Pchlide654/Pchlide633 ratio, corresponding to the amount of the photoactive Pchlide, was the highest in the youngest seedlings, and decreased with their age. LPORA, LPORB, and LPORC transcripts were detected in etiolated seedlings, and their content decreased during seedling growth. Expression of SAG12 or SAG13 senescence markers, depletion in antioxidants, and excess ion leakage were not observed during the etiolation. Lack of lutein in the lut2 mutant resulted in slow Pchlide accumulation and affected other xanthophyll composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.