The reaction of [Li(THF)(4)][1,8-mu-(Mes(2)B)C(10)H(6)] with HgCl(2) affords [1,1'-(Hg)-[8-(Mes(2)B)C(10)H(6)](2)] () or [1-(ClHg)-8-(Mes(2)B)C(10)H(6)] (), depending on the stoichiometry of the reagents. These two new compounds have been characterized by (1)H, (13)C, (11)B and (199)Hg NMR, elemental analysis and X-ray crystallography. The cyclic voltammogram of in THF shows two distinct waves observed at E(1/2) -2.31 V and -2.61 V, corresponding to the sequential reductions of the two boron centers. Fluoride titration experiments monitored by electrochemistry suggest that binds tightly to one fluoride anion and more loosely to a second one. Theses conclusions have been confirmed by a UV-vis titration experiment which indicates that the first fluoride binding constant (K(1)) is greater than 10(8) M(-1) while the second (K(2)) equals 5.2 (+/- 0.4) x 10(3) M(-1). The fluoride binding properties of have been compared to those of [1-(Me(2)B)-8-(Mes(2)B)C(10)H(6)] () and [1-((2,6-Me(2)-4-Me(2)NC(6)H(2))Hg)-8-(Mes(2)B)C(10)H(6)] (). Both experimental and computational results indicate that its affinity for fluoride anions is comparable to that of but significantly lower than that of the diborane . In particular, the fluoride binding constants of , and in chloroform are respectively equal to 5.0 (+/- 0.2) x 10(5) M(-1), 1.0 (+/- 0.2) x 10(3) M(-1) and 1.7 (+/- 0.1) x 10(3) M(-1). Determination of the crystal structures of the fluoride adducts [S(NMe(2))(3)][-mu(2)-F] and [S(NMe(2))(3)][-mu(2)-F] along with computational results indicate that the higher fluoride binding constant of arises from a strong chelate effect involving two fluorophilic boron centers.
Hydrazone-based molecular
switches serve as efficient ratiometric
pH-sensitive agents that can be tracked with 19F NMR/MRI
and 1H NMR. Structural changes induced between pH 3 and
4 lead to signal appearance and disappearance at 1H and 19F NMR spectra allowing ratiometric pH measurements. The most
pronounced are resonances of the CF3 group shifted by 1.8
ppm with 19F NMR and a hydrazone proton shifted by 2 ppm
with 1H NMR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.