BackgroundSnakes are considered to be vomerolfaction specialists. They are members of one of the most diverse groups of vertebrates, Squamata. The vomeronasal organ and the associated structures (such as the lacrimal duct, choanal groove, lamina transversalis anterior and cupola Jacobsoni) of adult lizards and snakes have received much anatomical, histological, physiological and behavioural attention. However, only limited embryological investigation into these structures, constrained to some anatomical or cellular studies and brief surveys, has been carried out thus far. The purpose of this study was, first, to examine the embryonic development of the vomeronasal organ and the associated structures in the grass snake (Natrix natrix), using three-dimensional reconstructions based on histological studies, and, second, to compare the obtained results with those presented in known publications on other snakes and lizards.ResultsFive major developmental processes were taken into consideration in this study: separation of the vomeronasal organ from the nasal cavity and its specialization, development of the mushroom body, formation of the lacrimal duct, development of the cupola Jacobsoni and its relation to the vomeronasal nerve, and specialization of the sensory epithelium. Our visualizations showed the VNO in relation to the nasal cavity, choanal groove, lacrimal duct and cupola Jacobsoni at different embryonic stages. We confirmed that the choanal groove disappears gradually, which indicates that this structure is absent in adult grass snakes. On our histological sections, we observed a gradual growth in the height of the columns of the vomeronasal sensory epithelium and widening of the spaces between them.ConclusionsThe main ophidian taxa (Scolecophidia, Henophidia and Caenophidia), just like other squamate clades, seem to be evolutionarily conservative at some levels with respect to the VNO and associated structures morphology. Thus, it was possible to homologize certain embryonic levels of the anatomical and histological complexity, observed in the grass snake, with adult conditions of certain groups of Squamata. This may reflect evolutionary shift in Squamata from visually oriented predators to vomerolfaction specialists. Our descriptions offer material useful for future comparative studies of Squamata, both at their anatomical and histological levels.Electronic supplementary materialThe online version of this article (doi:10.1186/s12983-017-0188-y) contains supplementary material, which is available to authorized users.
Background Despite the diverse morphology of the adult squamate naso-palatal complex – consisting of the nasal cavity, vomeronasal organ (VNO), choanal groove, lacrimal duct and superficial palate – little is known about the embryology of these structures. Moreover, there are no comprehensive studies concerning development of the nasal cavity and VNO in relation to the superficial palate. In this investigation, we used X-ray microtomography and histological sections to describe embryonic development of the naso-palatal complex of iguanian lizard, the brown anole (Anolis sagrei). The purpose of the study was to describe the mechanism of formation of adult morphology in this species, which combines the peculiar anole features with typical iguanian conditions. Considering the uncertain phylogenetic position of the Iguania within Squamata, embryological data and future comparative studies may shed new light on the evolution of this large squamate clade. Results Development of the naso-palatal complex was divided into three phases: early, middle and late. In the early developmental phase, the vomeronasal pit originates from medial outpocketing of the nasal pit, when the facial prominences are weakly developed. In the middle developmental phase, the following events can be noted: the formation of the frontonasal mass, separation of the vestibulum, appearance of the lacrimal duct, and formation of the choanal groove, which leads to separation of the VNO from the nasal cavity. In late development, the nasal cavity and the VNO attain their adult morphology. The lacrimal duct establishes an extensive connection with the choanal groove, which eventually becomes largely separated from the oral cavity. Conclusions Unlike in other tetrapods, the primordium of the lacrimal duct in the brown anole develops largely beyond the nasolacrimal groove. In contrast to previous studies on squamates, the maxillary prominence is found to participate in the initial fusion with the frontonasal mass. Moreover, formation of the choanal groove occurs due to the fusion of the vomerine cushion to the subconchal fold, rather than to the choanal fold. The loss or significant reduction of the lateral nasal concha is secondary. Some features of anole adult morphology, such as the closure of the choanal groove, may constitute adaptations to vomeronasal chemoreception.
In squamates, the nasal cavity and the vomeronasal organ (VNO) constitute the peripheral organs of the main and accessory olfactory systems respectively (Halpern, 1992; Martínez-Marcos & Halpern, 2009). The olfactory sensory epithelium, which forms receptive part of the nasal cavity, projects to the main olfactory bulb, while the vomeronasal sensory epithelium of the VNO projects to the accessory olfactory bulb located medial and posterior to the former
The sensory olfactory epithelium and the vomeronasal sensory epithelium (VSE) are characterized by continuous turnover of the receptor cells during postnatal life and are capable of regeneration after injury. The VSE, like the entire vomeronasal organ, is generally well developed in squamates and is crucial for detection of pheromones and prey odors. Despite the numerous studies on embryonic development of the VSE in squamates, especially in snakes, an ultrastructural analysis, as far as we know, has never been performed. Therefore, we investigated the embryology of the VSE of the grass snake (Natrix natrix) using electron microscopy (SEM and TEM) and light microscopy. As was shown for adult snakes, the hypertrophied ophidian VSE may provide great resolution of changes in neuron morphology located at various epithelial levels. The results of this study suggest that different populations of stem/progenitor cells occur at the base of the ophidian VSE during embryonic development. One of them may be radial glia‐like cells, described previously in mouse. The various structure and ultrastructure of neurons located at different parts of the VSE provide evidence for neuronal maturation and aging. Based on these results, a few nonmutually exclusive hypotheses explaining the formation of the peculiar columnar organization of the VSE in snakes were proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.