The purpose of this study was to determine whether cadmium (Cd) accumulation and toxicity in the midgut gland of Helix pomatia snails living in a Cd-contaminated area were related to soil pH. Toxic responses in the midgut gland (i.e., increased vacuolization and lipid peroxidation) occurred in H. pomatia snails exhibiting the highest Cd levels in the gland (265–274 µg/g dry wt) and living on acidic soil (pH 5.3–5.5), while no toxicity was observed in snails accumulating less Cd (90 µg/g) and ranging on neutral soil (pH 7.0), despite the fact that total soil Cd was similar in the two cases. The accumulation of Cd in the gland was directly related to the water extractable Cd in soil, which in turn correlated inversely with soil pH, indicating that this factor had a significant effect on tissue Cd. It appeared further that the occurrence of Cd toxicity was associated with low levels of metallothionein in the gland of snails ranging on acidic soil.
The objectives of this study were (1) to determine cadmium (Cd) accumulation in the midgut gland of a land snail Helix pomatia L. inhabiting residential areas of the 14 largest cities in Poland, and (2) to examine whether the accumulated Cd exerted any toxic effects. The average accumulation of Cd in the midgut gland of snails, weighing 16–18 g, ranged from 7.00 to 87.3 µg/g dry weight (0.06–0.77 µmol/g) and differed significantly among animals from the various urban areas. This difference in Cd accumulation was not related to city population, but was associated with the topsoil Cd (R2 = 0.868, p < 0.0001). The tissue Cd was not found to produce toxicity (histopathology, programmed cell death, lipofuscin formation or lipid peroxidation), probably due to the induction of sufficiently high quantities of metallothionein and glutathione, well-known protective molecules.
Background: The SARS-CoV-2 pandemic posed a great threat to public health, healthcare systems and the economy worldwide. It became clear that, in addition to COVID-19 and acute disease, the condition that develops after recovery may also negatively impact survivors’ health and quality of life. The damage inflicted by the viral infection on endothelial cells was identified quite early on as a possible mechanism underlying the so-called post-COVID syndrome. It became an urgent matter to establish whether convalescents present chronic endothelial impairment, which could result in an increased risk of cardiovascular and thrombotic complications. Methods: In this study, we measured the levels of CRP, ICAM-1, VCAM-1, E-selectin and syndecan-1 as markers of inflammation and endothelial injury in generally healthy convalescents selected from blood donors and compared these to a healthy control group. Results: We found higher concentrations of E-selectin and a lower level of syndecan-1 in convalescents in comparison to those of the control group. Conclusion: Based on our results, it can be concluded that, at least 6 months after infection, there is only slight evidence of endothelial dysfunction in COVID-19 convalescents who do not suffer from other comorbidities related to endothelial impairment.
Bank voles free living in a contaminated environment have been shown to be more sensitive to cadmium (Cd) toxicity than the rodents exposed to Cd under laboratory conditions. The objective of this study was to find out whether benzo(a)pyrene (BaP), a common environmental co-contaminant, increases Cd toxicity through inhibition of metallothionein (MT) synthesis-a low molecular weight protein that is considered to be primary intracellular component of the protective mechanism. For 6 weeks, the female bank voles were provided with diet containing Cd [less than 0.1 μg/g (control) and 60 μg/g dry wt.] and BaP (0, 5, and 10 μg/g dry wt.) alone or in combination. At the end of exposure period, apoptosis and analyses of MT, Cd, and zinc (Zn) in the liver and kidneys were carried out. Dietary BaP 5 μg/g did not affect but BaP 10 μg/g potentiated rather than inhibited induction of hepatic and renal MT by Cd, and diminished Cd-induced apoptosis in both organs. The hepatic and renal Zn followed a pattern similar to that of MT, attaining the highest level in the Cd+BaP 10-μg/g group. These data indicate that dietary BaP attenuates rather than exacerbates Cd toxicity in bank voles, probably by potentiating MT synthesis and increasing Zn concentration in the liver and kidneys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.