The condition of the vascular network of human eye is an important diagnostic factor in ophthalmology. Its segmentation in fundus imaging is a nontrivial task due to variable size of vessels, relatively low contrast, and potential presence of pathologies like microaneurysms and hemorrhages. Many algorithms, both unsupervised and supervised, have been proposed for this purpose in the past. We propose a supervised segmentation technique that uses a deep neural network trained on a large (up to 400[Formula: see text]000) sample of examples preprocessed with global contrast normalization, zero-phase whitening, and augmented using geometric transformations and gamma corrections. Several variants of the method are considered, including structured prediction, where a network classifies multiple pixels simultaneously. When applied to standard benchmarks of fundus imaging, the DRIVE, STARE, and CHASE databases, the networks significantly outperform the previous algorithms on the area under ROC curve measure (up to > 0.99) and accuracy of classification (up to > 0.97 ). The method is also resistant to the phenomenon of central vessel reflex, sensitive in detection of fine vessels ( sensitivity > 0.87 ), and fares well on pathological cases.
This study investigates the performance of several semanticaware selection methods for genetic programming (GP). In particular, we consider methods that do not rely on complete GP semantics (i.e., a tuple of outputs produced by a program for fitness cases (tests)), but on binary outcome vectors that only state whether a given test has been passed by a program or not. This allows us to relate to test-based problems commonly considered in the domain of coevolutionary algorithms and, in prospect, to address a wider range of practical problems, in particular the problems where desired program output is unknown (e.g., evolving GP controllers). The selection methods considered in the paper include implicit fitness sharing (ifs), discovery of derived objectives (doc), lexicase selection (lex), as well as a hybrid of the latter two. These techniques, together with a few variants, are experimentally compared to each other and to conventional GP on a battery of discrete benchmark problems. The outcomes indicate superior performance of lex and ifs, with some variants of doc showing certain potential.
Recent developments cast doubts on the effectiveness of coevolutionary learning in interactive domains. A simple evolution with fitness evaluation based on games with random strategies has been found to generalize better than competitive coevolution. In an attempt to investigate this phenomenon, we analyze the utility of random opponents for one-and two-population competitive coevolution applied to learning strategies for the game of Othello. We show that if coevolution uses two-population setup and engages also random opponents, it is capable of producing equally good strategies as evolution with random sampling for the expected utility performance measure.To investigate the differences between analyzed methods, we introduce performance profile, a tool that measures the player's performance against opponents of various strength. The profiles reveal that evolution with random sampling produces players coping well with mediocre opponents, but playing relatively poorly against stronger ones. This finding explains why in the round-robin tournament, evolution with random sampling is one of the worst methods from all those considered in this study.
Abstract-Achieving superhuman playing level by AlphaGo corroborated the capabilities of convolutional neural architectures (CNNs) for capturing complex spatial patterns. This result was to a great extent due to several analogies between Go board states and 2D images CNNs have been designed for, in particular translational invariance and a relatively large board. In this paper, we verify whether CNN-based move predictors prove effective for Othello, a game with significantly different characteristics, including a much smaller board size and complete lack of translational invariance. We compare several CNN architectures and board encodings, augment them with state-of-theart extensions, train on an extensive database of experts' moves, and examine them with respect to move prediction accuracy and playing strength. The empirical evaluation confirms high capabilities of neural move predictors and suggests a strong correlation between prediction accuracy and playing strength. The best CNNs not only surpass all other 1-ply Othello players proposed to date but defeat (2-ply) Edax, the best open-source Othello player.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.