AbstractPolypropylene composites filled with inorganic fillers are widely used due to their good mechanical and thermal properties. The modification efficiency of filler incorporated into thermoplastic polymer strongly depends on its shape and dimension. Therefore, the development of novel hybrid composites modified with particle and fibrous shaped fillers expands the range of thermoplastic composite applications. This work investigates the influence of glass fiber and basalt powder and their shape on the mechanical properties of polypropylene-based composites. Mechanical properties of hybrid composites were evaluated using static tensile test, impact resistance, and hardness measurements. The thermomechanical stability of the materials was evaluated via dynamic mechanical thermal analysis. Results indicated that the incorporation of inorganic fillers significantly improved the composite sample stiffness at a wide range of temperatures. The research was complemented with structure investigations realized using scanning electron microscopy. Moreover, the incorporation of basalt powder, which is well known for its low friction coefficient, improved the processing properties, as proven by the melt flow index test.
The Zn(II) and Mn(II) removal by an ion flotation process from model and real dilute aqueous solutions derived from waste batteries was studied in this work. The research aimed to determine optimal conditions for the removal of Zn(II) and Mn(II) from aqueous solutions after acidic leaching of Zn-C and Zn-Mn waste batteries. The ion flotation process was carried out at ambient temperature and atmospheric pressure. Two organic compounds used as collectors were applied, i.e., m-dodecylphosphoric acid 32 and m-tetradecylphosphoric 33 acid in the presence of a non-ionic foaming agent (Triton X-100, 29). It was found that both compounds can be used as collectors in the ion flotation for Zn(II) and Mn(II) removal process. Process parameters for Zn(II) and Mn(II) flotation have been established for collective or selective removal metals, e.g., good selectivity coefficients equal to 29.2 for Zn(II) over Mn(II) was achieved for a 10 min process using collector 32 in the presence of foaming agent 29 at pH = 9.0.
This article aims to analyze the
potential of new technologies
in the area of green chemistry didactics. When viewed through the
lens of systems thinking, the use of these ubiquitous tools can be
a driving force for the development of a sustainable world because
of their global use and reach. The authors concentrate on flat e-learning
platforms, social media tools, virtual reality platforms, and machinima,
as these tools enable learners to participate in different interdisciplinary
topics and exercise habits that trigger behavioral changes through
learning by doing or learning from mistakes. To demonstrate the potential
of innovative didactic tools, examples of mini scenarios for the development
of chemistry lessons are provided, and these scenarios promote the
sustainability concept and systems thinking. The authors conclude
that the pursuit of sustainability goals in chemistry education should
involve extended thinking about instructional design and asymmetries
in technology use, as well as incorporate green teaching into the
principles of green chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.