The paper considers the problem of implementation on graphics processors of numerical integration routines for higher order finite element approximations. The design of suitable GPU kernels is investigated in the context of general purpose integration procedures, as well as particular example applications. The most important characteristic of the problem investigated is the large variation of required processor and memory resources associated with different degrees of approximating polynomials. The questions that we try to answer are whether it is possible to design a single integration kernel for different GPUs and different orders of approximation and what performance can be expected in such a case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.