Despite the enormous progress in the treatment of atrial fibrillation, mainly with the use of invasive techniques, many questions remain unanswered regarding the pathomechanism of the arrhythmia and its prevention methods. The development of atrial fibrillation requires functional changes in the myocardium that result from disturbed ionic fluxes and altered electrophysiology of the cardiomyocyte. Electrical instability and electrical remodeling underlying the arrhythmia may result from a cellular energy deficit and oxidative stress, which are caused by mitochondrial dysfunction. The significance of mitochondrial dysfunction in the pathogenesis of atrial fibrillation remains not fully elucidated; however, it is emphasized by the reduction of atrial fibrillation burden after therapeutic interventions improving the mitochondrial welfare. This review summarizes the mechanisms of mitochondrial dysfunction related to atrial fibrillation and current pharmacological treatment options targeting mitochondria to prevent or improve the outcome of atrial fibrillation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.